1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
#![allow(clippy::cognitive_complexity)]
#![allow(clippy::many_single_char_names)]
#![allow(clippy::needless_doctest_main)]
#![allow(clippy::new_without_default)]
#![allow(clippy::range_plus_one)]
#![allow(clippy::too_many_arguments)]
#![allow(clippy::type_complexity)]
#![allow(clippy::unnecessary_wraps)]
#![allow(clippy::upper_case_acronyms)]
#![forbid(unsafe_code)]
#![deny(unreachable_pub)]
//! `lrpar` provides a Yacc-compatible parser (where grammars can be generated at compile-time or
//! run-time). It can take in traditional `.y` files and convert them into an idiomatic Rust
//! parser.
//!
//! If you're new to `lrpar`, please read the "quick start guide". The "grmtools book" and API
//! reference have more detailed information. You can find the appropriate documentation for the
//! version of lrpar you are using here:
//!
//! | Latest release | master |
//! |-----------------------------------------|--------|
//! | [Quickstart guide](https://softdevteam.github.io/grmtools/latest_release/book/quickstart.html) | [Quickstart guide](https://softdevteam.github.io/grmtools/master/book/quickstart.html) |
//! | [grmtools book](https://softdevteam.github.io/grmtools/latest_release/book/) | [grmtools book](https://softdevteam.github.io/grmtools/master/book) |
//! | [lrpar API](https://docs.rs/lrpar/) | [lrpar API](https://softdevteam.github.io/grmtools/master/api/lrpar/) |
//!
//! [Documentation for all past and present releases](https://softdevteam.github.io/grmtools/)
//!
//!
//! ## Example
//!
//! Let's assume we want to statically generate a parser for a simple calculator language (and
//! let's also assume we are able to use [`lrlex`](https://crates.io/crates/lrlex) for the lexer).
//! We need to add a `build.rs` file to our project which statically compiles both the lexer and
//! parser. While we can perform both steps individually, it's easiest to use `lrlex` which does
//! both jobs for us in one go. Our `build.rs` file thus looks as follows:
//!
//! ```text
//! use cfgrammar::yacc::YaccKind;
//! use lrlex::CTLexerBuilder;
//!
//! fn main() {
//! CTLexerBuilder::new()
//! .lrpar_config(|ctp| {
//! ctp.yacckind(YaccKind::Grmtools)
//! .grammar_in_src_dir("calc.y")
//! .unwrap()
//! })
//! .lexer_in_src_dir("calc.l")
//! .unwrap()
//! .build()
//! .unwrap();
//! }
//! ```
//!
//! where `src/calc.l` is as follows:
//!
//! ```text
//! %%
//! [0-9]+ "INT"
//! \+ "+"
//! \* "*"
//! \( "("
//! \) ")"
//! [\t ]+ ;
//! ```
//!
//! and `src/calc.y` is as follows:
//!
//! ```text
//! %start Expr
//! %avoid_insert "INT"
//! %%
//! Expr -> Result<u64, ()>:
//! Expr '+' Term { Ok($1? + $3?) }
//! | Term { $1 }
//! ;
//!
//! Term -> Result<u64, ()>:
//! Term '*' Factor { Ok($1? * $3?) }
//! | Factor { $1 }
//! ;
//!
//! Factor -> Result<u64, ()>:
//! '(' Expr ')' { $2 }
//! | 'INT'
//! {
//! let v = $1.map_err(|_| ())?;
//! parse_int($lexer.span_str(v.span()))
//! }
//! ;
//! %%
//! // Any functions here are in scope for all the grammar actions above.
//!
//! fn parse_int(s: &str) -> Result<u64, ()> {
//! match s.parse::<u64>() {
//! Ok(val) => Ok(val),
//! Err(_) => {
//! eprintln!("{} cannot be represented as a u64", s);
//! Err(())
//! }
//! }
//! }
//! ```
//!
//! Because we specified that our Yacc file is in `Grmtools` format, each rule has a
//! separate Rust type to which all its functions conform (in this case, all the
//! rules have the same type, but that's not a requirement).
//!
//! A simple `src/main.rs` is as follows:
//!
//! ```text
//! use std::io::{self, BufRead, Write};
//!
//! use lrlex::lrlex_mod;
//! use lrpar::lrpar_mod;
//!
//! // Using `lrlex_mod!` brings the lexer for `calc.l` into scope. By default the module name
//! // will be `calc_l` (i.e. the file name, minus any extensions, with a suffix of `_l`).
//! lrlex_mod!("calc.l");
//! // Using `lrpar_mod!` brings the parser for `calc.y` into scope. By default the module name
//! // will be `calc_y` (i.e. the file name, minus any extensions, with a suffix of `_y`).
//! lrpar_mod!("calc.y");
//!
//! fn main() {
//! // Get the `LexerDef` for the `calc` language.
//! let lexerdef = calc_l::lexerdef();
//! let stdin = io::stdin();
//! loop {
//! print!(">>> ");
//! io::stdout().flush().ok();
//! match stdin.lock().lines().next() {
//! Some(Ok(ref l)) => {
//! if l.trim().is_empty() {
//! continue;
//! }
//! // Now we create a lexer with the `lexer` method with which we can lex an input.
//! let lexer = lexerdef.lexer(l);
//! // Pass the lexer to the parser and lex and parse the input.
//! let (res, errs) = calc_y::parse(&lexer);
//! for e in errs {
//! println!("{}", e.pp(&lexer, &calc_y::token_epp));
//! }
//! match res {
//! Some(Ok(r)) => println!("Result: {}", r),
//! _ => eprintln!("Unable to evaluate expression.")
//! }
//! }
//! _ => break
//! }
//! }
//! }
//! ```
//!
//! We can now `cargo run` our project and evaluate simple expressions:
//!
//! ```text
//! >>> 2 + 3
//! Result: 5
//! >>> 2 + 3 * 4
//! Result: 14
//! >>> (2 + 3) * 4
//! Result: 20
//! ```
//!
//! `lrpar` also comes with advanced [error
//! recovery](https://softdevteam.github.io/grmtools/master/book/errorrecovery.html) built-in:
//!
//! ```text
//! >>> 2 + + 3
//! Parsing error at line 1 column 5. Repair sequences found:
//! 1: Delete +
//! 2: Insert INT
//! Result: 5
//! >>> 2 + 3 3
//! Parsing error at line 1 column 7. Repair sequences found:
//! 1: Insert *
//! 2: Insert +
//! 3: Delete 3
//! Result: 11
//! >>> 2 + 3 4 5
//! Parsing error at line 1 column 7. Repair sequences found:
//! 1: Insert *, Delete 4
//! 2: Insert +, Delete 4
//! 3: Delete 4, Delete 5
//! 4: Insert +, Shift 4, Delete 5
//! 5: Insert +, Shift 4, Insert +
//! 6: Insert *, Shift 4, Delete 5
//! 7: Insert *, Shift 4, Insert *
//! 8: Insert *, Shift 4, Insert +
//! 9: Insert +, Shift 4, Insert *
//! Result: 17
//! ```
mod cpctplus;
#[doc(hidden)]
pub mod ctbuilder;
mod dijkstra;
#[doc(hidden)]
pub mod lex_api;
#[doc(hidden)]
pub mod parser;
#[cfg(test)]
mod test_utils;
pub use crate::{
ctbuilder::{CTParser, CTParserBuilder, RustEdition, Visibility},
lex_api::{LexError, Lexeme, Lexer, LexerTypes, NonStreamingLexer},
parser::{LexParseError, Node, ParseError, ParseRepair, RTParserBuilder, RecoveryKind},
};
pub use crate::parser::action_generictree;
/// A convenience macro for including statically compiled `.y` files. A file `src/a/b/c.y`
/// processed by [CTParserBuilder::grammar_in_src_dir] can then be used in a crate with
/// `lrpar_mod!("a/b/c.y")`.
///
/// Note that you can use `lrpar_mod` with [CTParserBuilder::output_path] if, and only if, the
/// output file was placed in [std::env::var]`("OUT_DIR")` or one of its subdirectories.
#[macro_export]
macro_rules! lrpar_mod {
($path:expr) => {
include!(concat!(env!("OUT_DIR"), "/", $path, ".rs"));
};
}
#[deprecated(
since = "0.13.0",
note = "Please import this as `cfgrammar::Span` instead"
)]
pub use cfgrammar::Span;
/// This private module with pub items which is directly related to
/// the "Sealed trait" pattern. These items are used within the current
/// crate. See `unstable_api` module for enabling usage outside the crate.
mod unstable {
#![allow(unused)]
#![allow(unreachable_pub)]
pub struct UnstableApi;
pub trait UnstableTrait {}
}
/// A module for lifting restrictions on visibility by enabling unstable features.
///
/// See the sources for a complete list of features, and members.
pub mod unstable_api {
/// Unstable functions that take a value `UnstableApi` require
/// the "_unstable_api" feature. This feature controls
/// whether the value has `pub` visibility outside the crate.
#[cfg(feature = "_unstable_api")]
pub use crate::unstable::UnstableApi;
/// This is a a supertrait for traits that are considered to be Unstable.
/// Unstable traits do not provide any semver guarantees.
///
/// Enabling the `_unsealed_unstable traits` makes this supertrait publicly
/// Visible.
///
///
/// Declaring an unstable Api within the crate:
/// ```ignore_rust
/// // Within the crate use `crate::unstable::` .
/// pub trait Foo: crate::unstable::UnstableTrait {
/// fn foo(key: crate::unstable::UnstableApi);
/// }
/// ```
///
/// Deriving the trait outside the crate (requires feature `_unsealed_unstable_traits`)
/// ```ignore_rust
/// struct Bar;
/// impl unstable_api::UnstableTrait for Bar{}
/// impl Foo for Bar {
/// fn foo(key: unstable_api::UnstableApi) {
/// ...
/// }
/// }
/// ```
///
///
/// Calling an implementation of the trait outside the crate (requires feature `_unstable_api`:
/// ```ignore_rust
/// let x: &dyn Foo = ...;
/// x.foo(unstable_api::UnstableApi);
/// ```
#[cfg(feature = "_unsealed_unstable_traits")]
pub use crate::unstable::UnstableTrait;
/// An value that acts as a key to inform callers that they are
/// calling an unstable internal api. This value is public by default.
/// Access to it does not require any features to be enabled.
///
/// Q. When this should be used?
///
/// A. When generated code needs to call internal api within it,
/// where you do not want the caller to have to enable any features
/// to use the generated code.
pub struct InternalPublicApi;
}