lrlex/
ctbuilder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
//! Build grammars at run-time.

use std::{
    any::type_name,
    borrow::Cow,
    collections::{HashMap, HashSet},
    env::{current_dir, var},
    error::Error,
    fmt::{Debug, Display, Write as _},
    fs::{self, create_dir_all, read_to_string, File},
    hash::Hash,
    io::Write,
    path::{Path, PathBuf},
    str::FromStr,
    sync::Mutex,
};

use cfgrammar::{newlinecache::NewlineCache, Spanned};
use lazy_static::lazy_static;
use lrpar::{CTParserBuilder, LexerTypes};
use num_traits::{AsPrimitive, PrimInt, Unsigned};
use quote::quote;
use regex::Regex;
use serde::Serialize;

use crate::{
    DefaultLexerTypes, LRNonStreamingLexerDef, LexerDef, RegexOptions, DEFAULT_REGEX_OPTIONS,
};

const RUST_FILE_EXT: &str = "rs";

lazy_static! {
    static ref RE_TOKEN_ID: Regex = Regex::new(r"^[a-zA-Z_][a-zA-Z_0-9]*$").unwrap();
    static ref GENERATED_PATHS: Mutex<HashSet<PathBuf>> = Mutex::new(HashSet::new());
}

pub enum LexerKind {
    LRNonStreamingLexer,
}

/// Specify the visibility of the module generated by [CTLexerBuilder].
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Visibility {
    /// Module-level visibility only.
    Private,
    /// `pub`
    Public,
    /// `pub(super)`
    PublicSuper,
    /// `pub(self)`
    PublicSelf,
    /// `pub(crate)`
    PublicCrate,
    /// `pub(in {arg})`
    PublicIn(String),
}

impl Visibility {
    fn cow_str(&self) -> Cow<'static, str> {
        match self {
            Visibility::Private => Cow::from(""),
            Visibility::Public => Cow::from("pub"),
            Visibility::PublicSuper => Cow::from("pub(super)"),
            Visibility::PublicSelf => Cow::from("pub(self)"),
            Visibility::PublicCrate => Cow::from("pub(crate)"),
            Visibility::PublicIn(data) => Cow::from(format!("pub(in {})", data)),
        }
    }
}

/// Specifies the [Rust Edition] that will be emitted during code generation.
///
/// [Rust Edition]: https://doc.rust-lang.org/edition-guide/rust-2021/index.html
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum RustEdition {
    Rust2015,
    Rust2018,
    Rust2021,
}

/// A `CTLexerBuilder` allows one to specify the criteria for building a statically generated
/// lexer.
pub struct CTLexerBuilder<'a, LexerTypesT: LexerTypes = DefaultLexerTypes<u32>>
where
    LexerTypesT::StorageT: Debug + Eq + Hash,
    usize: num_traits::AsPrimitive<LexerTypesT::StorageT>,
{
    lrpar_config: Option<Box<dyn Fn(CTParserBuilder<LexerTypesT>) -> CTParserBuilder<LexerTypesT>>>,
    lexer_path: Option<PathBuf>,
    output_path: Option<PathBuf>,
    lexerkind: LexerKind,
    mod_name: Option<&'a str>,
    visibility: Visibility,
    rust_edition: RustEdition,
    rule_ids_map: Option<HashMap<String, LexerTypesT::StorageT>>,
    allow_missing_terms_in_lexer: bool,
    allow_missing_tokens_in_parser: bool,
    regex_options: RegexOptions,
}

impl CTLexerBuilder<'_, DefaultLexerTypes<u32>> {
    /// Create a new [CTLexerBuilder].
    pub fn new() -> Self {
        CTLexerBuilder::<DefaultLexerTypes<u32>>::new_with_lexemet()
    }
}

impl<'a, LexerTypesT: LexerTypes> CTLexerBuilder<'a, LexerTypesT>
where
    LexerTypesT::StorageT:
        'static + Debug + Eq + Hash + PrimInt + Serialize + TryFrom<usize> + Unsigned,
    usize: AsPrimitive<LexerTypesT::StorageT>,
{
    /// Create a new [CTLexerBuilder].
    ///
    /// `LexerTypesT::StorageT` must be an unsigned integer type (e.g. `u8`, `u16`) which is big enough
    /// to index all the tokens, rules, and productions in the lexer and less than or equal in size
    /// to `usize` (e.g. on a 64-bit machine `u128` would be too big). If you are lexing large
    /// files, the additional storage requirements of larger integer types can be noticeable, and
    /// in such cases it can be worth specifying a smaller type. `StorageT` defaults to `u32` if
    /// unspecified.
    ///
    /// # Examples
    ///
    /// ```text
    /// CTLexerBuilder::<DefaultLexerTypes<u8>>::new_with_lexemet()
    ///     .lexer_in_src_dir("grm.l", None)?
    ///     .build()?;
    /// ```
    pub fn new_with_lexemet() -> Self {
        CTLexerBuilder {
            lrpar_config: None,
            lexer_path: None,
            output_path: None,
            lexerkind: LexerKind::LRNonStreamingLexer,
            mod_name: None,
            visibility: Visibility::Private,
            rust_edition: RustEdition::Rust2021,
            rule_ids_map: None,
            allow_missing_terms_in_lexer: false,
            allow_missing_tokens_in_parser: true,
            regex_options: DEFAULT_REGEX_OPTIONS,
        }
    }

    /// An optional convenience function to make it easier to create an (lrlex) lexer and (lrpar)
    /// parser in one shot. The closure passed to this function will be called during
    /// [CTLexerBuilder::build]: it will be passed an lrpar `CTParserBuilder` instance upon which
    /// it can set whatever lrpar options are desired. [`CTLexerBuilder`] will then create both the
    /// compiler and lexer and link them together as required.
    ///
    /// # Examples
    ///
    /// ```text
    /// CTLexerBuilder:::new()
    ///     .lrpar_config(|ctp| {
    ///         ctp.yacckind(YaccKind::Grmtools)
    ///             .grammar_in_src_dir("calc.y")
    ///             .unwrap()
    ///     })
    ///     .lexer_in_src_dir("calc.l")?
    ///     .build()?;
    /// ```
    pub fn lrpar_config<F>(mut self, config_func: F) -> Self
    where
        F: 'static + Fn(CTParserBuilder<LexerTypesT>) -> CTParserBuilder<LexerTypesT>,
    {
        self.lrpar_config = Some(Box::new(config_func));
        self
    }

    /// Set the input lexer path to a file relative to this project's `src` directory. This will
    /// also set the output path (i.e. you do not need to call [CTLexerBuilder::output_path]).
    ///
    /// For example if `a/b.l` is passed as `inp` then [CTLexerBuilder::build] will:
    ///   * use `src/a/b.l` as the input file.
    ///   * write output to a file which can then be imported by calling `lrlex_mod!("a/b.l")`.
    ///   * create a module in that output file named `b_l`.
    ///
    /// You can override the output path and/or module name by calling
    /// [CTLexerBuilder::output_path] and/or [CTLexerBuilder::mod_name], respectively, after
    /// calling this function.
    ///
    /// This is a convenience function that makes it easier to compile lexer files stored in a
    /// project's `src/` directory: please see [CTLexerBuilder::build] for additional constraints
    /// and information about the generated files. Note also that each `.l` file can only be
    /// processed once using this function: if you want to generate multiple lexers from a single
    /// `.l` file, you will need to use [CTLexerBuilder::output_path].
    pub fn lexer_in_src_dir<P>(mut self, srcp: P) -> Result<Self, Box<dyn Error>>
    where
        P: AsRef<Path>,
    {
        if !srcp.as_ref().is_relative() {
            return Err(format!(
                "Lexer path '{}' must be a relative path.",
                srcp.as_ref().to_str().unwrap_or("<invalid UTF-8>")
            )
            .into());
        }

        let mut lexp = current_dir()?;
        lexp.push("src");
        lexp.push(srcp.as_ref());
        self.lexer_path = Some(lexp);

        let mut outp = PathBuf::new();
        outp.push(var("OUT_DIR").unwrap());
        outp.push(srcp.as_ref().parent().unwrap().to_str().unwrap());
        create_dir_all(&outp)?;
        let mut leaf = srcp
            .as_ref()
            .file_name()
            .unwrap()
            .to_str()
            .unwrap()
            .to_owned();
        write!(leaf, ".{}", RUST_FILE_EXT).ok();
        outp.push(leaf);
        Ok(self.output_path(outp))
    }

    /// Set the input lexer path to `inp`. If specified, you must also call
    /// [CTLexerBuilder::output_path]. In general it is easier to use
    /// [CTLexerBuilder::lexer_in_src_dir].
    pub fn lexer_path<P>(mut self, inp: P) -> Self
    where
        P: AsRef<Path>,
    {
        self.lexer_path = Some(inp.as_ref().to_owned());
        self
    }

    /// Set the output lexer path to `outp`. Note that there are no requirements on `outp`: the
    /// file can exist anywhere you can create a valid [Path] to. However, if you wish to use
    /// [crate::lrlex_mod!] you will need to make sure that `outp` is in
    /// [std::env::var]`("OUT_DIR")` or one of its subdirectories.
    pub fn output_path<P>(mut self, outp: P) -> Self
    where
        P: AsRef<Path>,
    {
        self.output_path = Some(outp.as_ref().to_owned());
        self
    }

    /// Set the type of lexer to be generated to `lexerkind`.
    pub fn lexerkind(mut self, lexerkind: LexerKind) -> Self {
        self.lexerkind = lexerkind;
        self
    }

    /// Set the generated module name to `mod_name`. If no module name is specified,
    /// [`process_file`](#method.process_file) will attempt to create a sensible default based on
    /// the input filename.
    pub fn mod_name(mut self, mod_name: &'a str) -> Self {
        self.mod_name = Some(mod_name);
        self
    }

    /// Set the visibility of the generated module to `vis`. Defaults to `Visibility::Private`.
    pub fn visibility(mut self, vis: Visibility) -> Self {
        self.visibility = vis;
        self
    }

    /// Sets the rust edition to be used for generated code. Defaults to the latest edition of
    /// rust supported by grmtools.
    pub fn rust_edition(mut self, edition: RustEdition) -> Self {
        self.rust_edition = edition;
        self
    }

    /// Set this lexer builder's map of rule IDs to `rule_ids_map`. By default, lexing rules have
    /// arbitrary, but distinct, IDs. Setting the map of rule IDs (from rule names to `StorageT`)
    /// allows users to synchronise a lexer and parser and to check that all rules are used by both
    /// parts).
    pub fn rule_ids_map<T: std::borrow::Borrow<HashMap<String, LexerTypesT::StorageT>> + Clone>(
        mut self,
        rule_ids_map: T,
    ) -> Self {
        self.rule_ids_map = Some(rule_ids_map.borrow().to_owned());
        self
    }

    /// Statically compile the `.l` file specified by [CTLexerBuilder::lexer_path()] into Rust,
    /// placing the output into the file specified by [CTLexerBuilder::output_path()].
    ///
    /// The generated module follows the form:
    ///
    /// ```text
    ///    mod modname {
    ///      pub fn lexerdef() -> LexerDef<LexerTypesT> { ... }
    ///
    ///      ...
    ///    }
    /// ```
    ///
    /// where:
    ///  * `modname` is either:
    ///    * the module name specified by [CTLexerBuilder::mod_name()]
    ///    * or, if no module name was explicitly specified, then for the file `/a/b/c.l` the
    ///      module name is `c_l` (i.e. the file's leaf name, minus its extension, with a prefix of
    ///      `_l`).
    pub fn build(mut self) -> Result<CTLexer, Box<dyn Error>> {
        if let Some(ref lrcfg) = self.lrpar_config {
            let mut ctp = CTParserBuilder::<LexerTypesT>::new();
            ctp = lrcfg(ctp);
            let map = ctp.build()?;
            self.rule_ids_map = Some(map.token_map().to_owned());
        }

        let lexerp = self
            .lexer_path
            .as_ref()
            .expect("lexer_path must be specified before processing.");
        let outp = self
            .output_path
            .as_ref()
            .expect("output_path must be specified before processing.");

        {
            let mut lk = GENERATED_PATHS.lock().unwrap();
            if lk.contains(outp.as_path()) {
                return Err(format!("Generating two lexers to the same path ('{}') is not allowed: use CTLexerBuilder::output_path (and, optionally, CTLexerBuilder::mod_name) to differentiate them.", &outp.to_str().unwrap()).into());
            }
            lk.insert(outp.clone());
        }

        let lex_src = read_to_string(lexerp)
            .map_err(|e| format!("When reading '{}': {e}", lexerp.display()))?;
        let line_cache = NewlineCache::from_str(&lex_src).unwrap();
        let mut lexerdef: Box<dyn LexerDef<LexerTypesT>> = match self.lexerkind {
            LexerKind::LRNonStreamingLexer => Box::new(
                LRNonStreamingLexerDef::<LexerTypesT>::new_with_options(
                    &lex_src,
                    self.regex_options.clone(),
                )
                .map_err(|errs| {
                    errs.iter()
                        .map(|e| {
                            if let Some((line, column)) = line_cache.byte_to_line_num_and_col_num(
                                &lex_src,
                                e.spans().first().unwrap().start(),
                            ) {
                                format!("{} at line {line} column {column}", e)
                            } else {
                                format!("{}", e)
                            }
                        })
                        .collect::<Vec<_>>()
                        .join("\n")
                })?,
            ),
        };
        let (missing_from_lexer, missing_from_parser) = match self.rule_ids_map {
            Some(ref rim) => {
                // Convert from HashMap<String, _> to HashMap<&str, _>
                let owned_map = rim
                    .iter()
                    .map(|(x, y)| (&**x, *y))
                    .collect::<HashMap<_, _>>();
                let (x, y) = lexerdef.set_rule_ids(&owned_map);
                (
                    x.map(|a| a.iter().map(|&b| b.to_string()).collect::<HashSet<_>>()),
                    y.map(|a| a.iter().map(|&b| b.to_string()).collect::<HashSet<_>>()),
                )
            }
            None => (None, None),
        };

        let mut has_unallowed_missing = false;
        if !self.allow_missing_terms_in_lexer {
            if let Some(ref mfl) = missing_from_lexer {
                eprintln!("Error: the following tokens are used in the grammar but are not defined in the lexer:");
                for n in mfl {
                    eprintln!("    {}", n);
                }
                has_unallowed_missing = true;
            }
        }
        if !self.allow_missing_tokens_in_parser {
            if let Some(ref mfp) = missing_from_parser {
                eprintln!("Error: the following tokens are defined in the lexer but not used in the grammar:");
                for n in mfp {
                    eprintln!("    {}", n);
                }
                has_unallowed_missing = true;
            }
        }
        if has_unallowed_missing {
            fs::remove_file(outp).ok();
            panic!();
        }

        let mod_name = match self.mod_name {
            Some(s) => s.to_owned(),
            None => {
                // The user hasn't specified a module name, so we create one automatically: what we
                // do is strip off all the filename extensions (note that it's likely that inp ends
                // with `l.rs`, so we potentially have to strip off more than one extension) and
                // then add `_l` to the end.
                let mut stem = lexerp.to_str().unwrap();
                loop {
                    let new_stem = Path::new(stem).file_stem().unwrap().to_str().unwrap();
                    if stem == new_stem {
                        break;
                    }
                    stem = new_stem;
                }
                format!("{}_l", stem)
            }
        };

        let mut outs = String::new();
        //
        // Header

        let (lexerdef_name, lexerdef_type) = match self.lexerkind {
            LexerKind::LRNonStreamingLexer => (
                "LRNonStreamingLexerDef",
                format!(
                    "LRNonStreamingLexerDef<{lexertypest}>",
                    lexertypest = type_name::<LexerTypesT>()
                ),
            ),
        };

        write!(
            outs,
            "{mod_vis} mod {mod_name} {{
use lrlex::{{LexerDef, LRNonStreamingLexerDef, Rule, StartState}};

#[allow(dead_code)]
pub fn lexerdef() -> {lexerdef_type} {{
",
            mod_vis = self.visibility.cow_str(),
            mod_name = mod_name,
            lexerdef_type = lexerdef_type
        )
        .ok();

        outs.push_str(&format!(
            "let regex_options = ::lrlex::RegexOptions {{
            dot_matches_new_line: {dot_matches_new_line:?},
            multi_line: {multi_line:?},
            octal: {octal:?},
            case_insensitive: {case_insensitive:?},
            unicode: {unicode:?},
            swap_greed: {swap_greed:?},
            ignore_whitespace: {ignore_whitespace:?},
            size_limit: {size_limit:?},
            dfa_size_limit: {dfa_size_limit:?},
            nest_limit: {nest_limit:?},
        }};",
            dot_matches_new_line = self.regex_options.dot_matches_new_line,
            multi_line = self.regex_options.multi_line,
            octal = self.regex_options.octal,
            case_insensitive = self.regex_options.case_insensitive,
            unicode = self.regex_options.unicode,
            swap_greed = self.regex_options.swap_greed,
            ignore_whitespace = self.regex_options.ignore_whitespace,
            size_limit = self.regex_options.size_limit,
            dfa_size_limit = self.regex_options.dfa_size_limit,
            nest_limit = self.regex_options.nest_limit,
        ));

        outs.push_str("    let start_states: Vec<StartState> = vec![");
        for ss in lexerdef.iter_start_states() {
            let state_name = &ss.name;
            write!(
                outs,
                "
        StartState::new({}, {}, {}, ::cfgrammar::Span::new({}, {})),",
                ss.id,
                quote!(#state_name),
                ss.exclusive,
                ss.name_span.start(),
                ss.name_span.end()
            )
            .ok();
        }
        outs.push_str("\n    ];\n");
        outs.push_str("    let rules = vec![");

        // Individual rules
        for r in lexerdef.iter_rules() {
            let tok_id = match r.tok_id {
                Some(ref t) => format!("Some({:?})", t),
                None => "None".to_owned(),
            };
            let n = match r.name() {
                Some(ref n) => format!("Some({}.to_string())", quote!(#n)),
                None => "None".to_owned(),
            };
            let target_state = match &r.target_state() {
                Some((id, op)) => format!("Some(({}, ::lrlex::StartStateOperation::{:?}))", id, op),
                None => "None".to_owned(),
            };
            let n_span = format!(
                "::cfgrammar::Span::new({}, {})",
                r.name_span().start(),
                r.name_span().end()
            );
            let regex = &r.re_str;
            let start_states = r.start_states();
            write!(
                outs,
                "
        Rule::new(::lrlex::unstable_api::InternalPublicApi, {}, {}, {}, {}.to_string(), {}.to_vec(), {}, &regex_options).unwrap(),",
                tok_id,
                n,
                n_span,
                quote!(#regex),
                quote!([#(#start_states),*]),
                target_state,
            )
            .ok();
        }

        // Footer
        write!(
            outs,
            "
    ];
    {lexerdef_name}::from_rules(start_states, rules)
}}

",
            lexerdef_name = lexerdef_name
        )
        .ok();

        // Token IDs
        if let Some(ref rim) = self.rule_ids_map {
            for (n, id) in rim {
                if RE_TOKEN_ID.is_match(n) {
                    write!(
                        outs,
                        "#[allow(dead_code)]\npub const T_{}: {} = {:?};\n",
                        n.to_ascii_uppercase(),
                        type_name::<LexerTypesT::StorageT>(),
                        *id
                    )
                    .ok();
                }
            }
        }

        // Footer
        outs.push('}');

        // If the file we're about to write out already exists with the same contents, then we
        // don't overwrite it (since that will force a recompile of the file, and relinking of the
        // binary etc).
        if let Ok(curs) = read_to_string(outp) {
            if curs == outs {
                return Ok(CTLexer {
                    missing_from_lexer,
                    missing_from_parser,
                });
            }
        }
        let mut f = File::create(outp)?;
        f.write_all(outs.as_bytes())?;
        Ok(CTLexer {
            missing_from_lexer,
            missing_from_parser,
        })
    }

    /// Given the filename `a/b.l` as input, statically compile the file `src/a/b.l` into a Rust
    /// module which can then be imported using `lrlex_mod!("a/b.l")`. This is a convenience
    /// function around [`process_file`](struct.CTLexerBuilder.html#method.process_file) which makes
    /// it easier to compile `.l` files stored in a project's `src/` directory: please see
    /// [`process_file`](#method.process_file) for additional constraints and information about the
    /// generated files.
    #[deprecated(
        since = "0.11.0",
        note = "Please use lexer_in_src_dir() and build() instead"
    )]
    #[allow(deprecated)]
    pub fn process_file_in_src(
        self,
        srcp: &str,
    ) -> Result<(Option<HashSet<String>>, Option<HashSet<String>>), Box<dyn Error>> {
        let mut inp = current_dir()?;
        inp.push("src");
        inp.push(srcp);
        let mut outp = PathBuf::new();
        outp.push(var("OUT_DIR").unwrap());
        outp.push(Path::new(srcp).parent().unwrap().to_str().unwrap());
        create_dir_all(&outp)?;
        let mut leaf = Path::new(srcp)
            .file_name()
            .unwrap()
            .to_str()
            .unwrap()
            .to_owned();
        write!(leaf, ".{}", RUST_FILE_EXT).ok();
        outp.push(leaf);
        self.process_file(inp, outp)
    }

    /// Statically compile the `.l` file `inp` into Rust, placing the output into the file `outp`.
    /// The latter defines a module as follows:
    ///
    /// ```text
    ///    mod modname {
    ///      pub fn lexerdef() -> LexerDef<LexerTypesT::StorageT> { ... }
    ///
    ///      ...
    ///    }
    /// ```
    ///
    /// where:
    ///  * `modname` is either:
    ///    * the module name specified [`mod_name`](#method.mod_name)
    ///    * or, if no module name was explicitly specified, then for the file `/a/b/c.l` the
    ///      module name is `c_l` (i.e. the file's leaf name, minus its extension, with a prefix of
    ///      `_l`).
    #[deprecated(
        since = "0.11.0",
        note = "Please use lexer_in_src_dir() and build() instead"
    )]
    pub fn process_file<P, Q>(
        mut self,
        inp: P,
        outp: Q,
    ) -> Result<(Option<HashSet<String>>, Option<HashSet<String>>), Box<dyn Error>>
    where
        P: AsRef<Path>,
        Q: AsRef<Path>,
    {
        self.lexer_path = Some(inp.as_ref().to_owned());
        self.output_path = Some(outp.as_ref().to_owned());
        let cl = self.build()?;
        Ok((
            cl.missing_from_lexer().map(|x| x.to_owned()),
            cl.missing_from_parser().map(|x| x.to_owned()),
        ))
    }

    /// If passed false, tokens used in the grammar but not defined in the lexer will cause a
    /// panic at lexer generation time. Defaults to false.
    pub fn allow_missing_terms_in_lexer(mut self, allow: bool) -> Self {
        self.allow_missing_terms_in_lexer = allow;
        self
    }

    /// If passed false, tokens defined in the lexer but not used in the grammar will cause a
    /// panic at lexer generation time. Defaults to true (since lexers sometimes define tokens such
    /// as reserved words, which are intentionally not in the grammar).
    pub fn allow_missing_tokens_in_parser(mut self, allow: bool) -> Self {
        self.allow_missing_tokens_in_parser = allow;
        self
    }

    /// Sets the `regex::RegexBuilder` option of the same name.
    /// The default value is `true`.
    pub fn dot_matches_new_line(mut self, flag: bool) -> Self {
        self.regex_options.dot_matches_new_line = flag;
        self
    }

    /// Sets the `regex::RegexBuilder` option of the same name.
    /// The default value is `true`.
    pub fn multi_line(mut self, flag: bool) -> Self {
        self.regex_options.multi_line = flag;
        self
    }

    /// Sets the `regex::RegexBuilder` option of the same name.
    /// The default value is `true`.
    pub fn octal(mut self, flag: bool) -> Self {
        self.regex_options.octal = flag;
        self
    }

    /// Sets the `regex::RegexBuilder` option of the same name.
    /// Default value is specified by regex.
    pub fn swap_greed(mut self, flag: bool) -> Self {
        self.regex_options.swap_greed = Some(flag);
        self
    }

    /// Sets the `regex::RegexBuilder` option of the same name.
    /// Default value is specified by regex.
    pub fn ignore_whitespace(mut self, flag: bool) -> Self {
        self.regex_options.ignore_whitespace = Some(flag);
        self
    }

    /// Sets the `regex::RegexBuilder` option of the same name.
    /// Default value is specified by regex.
    pub fn unicode(mut self, flag: bool) -> Self {
        self.regex_options.unicode = Some(flag);
        self
    }

    /// Sets the `regex::RegexBuilder` option of the same name.
    /// Default value is specified by regex.
    pub fn case_insensitive(mut self, flag: bool) -> Self {
        self.regex_options.case_insensitive = Some(flag);
        self
    }

    /// Sets the `regex::RegexBuilder` option of the same name.
    /// Default value is specified by regex.
    pub fn size_limit(mut self, sz: usize) -> Self {
        self.regex_options.size_limit = Some(sz);
        self
    }

    /// Sets the `regex::RegexBuilder` option of the same name.
    /// Default value is specified by regex.
    pub fn dfa_size_limit(mut self, sz: usize) -> Self {
        self.regex_options.dfa_size_limit = Some(sz);
        self
    }

    /// Sets the `regex::RegexBuilder` option of the same name.
    /// Default value is specified by regex.
    pub fn nest_limit(mut self, lim: u32) -> Self {
        self.regex_options.nest_limit = Some(lim);
        self
    }
}

/// An interface to the result of [CTLexerBuilder::build()].
pub struct CTLexer {
    missing_from_lexer: Option<HashSet<String>>,
    missing_from_parser: Option<HashSet<String>>,
}

impl CTLexer {
    fn missing_from_lexer(&self) -> Option<&HashSet<String>> {
        self.missing_from_lexer.as_ref()
    }

    fn missing_from_parser(&self) -> Option<&HashSet<String>> {
        self.missing_from_parser.as_ref()
    }
}

/// Create a Rust module named `mod_name` that can be imported with
/// [`lrlex_mod!(mod_name)`](crate::lrlex_mod). The module contains one `const` `StorageT` per
/// token in `token_map`, with the token prefixed by `T_`. For example with `StorageT` `u8`,
/// `mod_name` `x`, and `token_map` `HashMap{"ID": 0, "INT": 1}` the generated module will look
/// roughly as follows:
///
/// ```rust,ignore
/// mod x {
///   pub const T_ID: u8 = 0;
///   pub const T_INT: u8 = 1;
/// }
/// ```
///
/// You can optionally remap names (for example, because the parser's token names do not lead to
/// valid Rust identifiers) by specifying the `rename_map` `HashMap`. For example, if `token_map`
/// is `HashMap{"+": 0, "ID": 1}` and `rename_map` is `HashMap{"+": "PLUS"}` then the generated
/// module will look roughly as follows:
///
/// ```rust,ignore
/// mod x {
///   pub const T_PLUS: u8 = 0;
///   pub const T_ID: u8 = 1;
/// }
/// ```
pub fn ct_token_map<StorageT: Display>(
    mod_name: &str,
    token_map: &HashMap<String, StorageT>,
    rename_map: Option<&HashMap<&str, &str>>,
) -> Result<(), Box<dyn Error>> {
    // Record the time that this version of lrlex was built. If the source code changes and rustc
    // forces a recompile, this will change this value, causing anything which depends on this
    // build of lrlex to be recompiled too.
    let mut outs = String::new();
    let timestamp = env!("VERGEN_BUILD_TIMESTAMP");
    write!(
        outs,
        "// lrlex build time: {}\n\nmod {} {{\n",
        quote!(#timestamp),
        mod_name
    )
    .ok();
    outs.push_str(
        &token_map
            .iter()
            .map(|(k, v)| {
                let k = match rename_map {
                    Some(rmap) => *rmap.get(k.as_str()).unwrap_or(&k.as_str()),
                    _ => k,
                };
                format!(
                    "    #[allow(dead_code)] pub const T_{}: {} = {};",
                    k,
                    type_name::<StorageT>(),
                    v
                )
            })
            .collect::<Vec<_>>()
            .join("\n"),
    );
    outs.push_str("\n}");

    let mut outp = PathBuf::from(var("OUT_DIR")?);
    outp.push(mod_name);
    outp.set_extension("rs");

    // If the file we're about to write out already exists with the same contents, then we
    // don't overwrite it (since that will force a recompile of the file, and relinking of the
    // binary etc).
    if let Ok(curs) = read_to_string(&outp) {
        if curs == outs {
            return Ok(());
        }
    }

    let mut f = File::create(outp)?;
    f.write_all(outs.as_bytes())?;
    Ok(())
}