lrlex/ctbuilder.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
//! Build grammars at run-time.
use std::{
any::type_name,
borrow::Cow,
collections::{HashMap, HashSet},
env::{current_dir, var},
error::Error,
fmt::{Debug, Display, Write as _},
fs::{self, create_dir_all, read_to_string, File},
hash::Hash,
io::Write,
path::{Path, PathBuf},
str::FromStr,
sync::Mutex,
};
use cfgrammar::{newlinecache::NewlineCache, Spanned};
use lazy_static::lazy_static;
use lrpar::{CTParserBuilder, LexerTypes};
use num_traits::{AsPrimitive, PrimInt, Unsigned};
use quote::quote;
use regex::Regex;
use serde::Serialize;
use crate::{
DefaultLexerTypes, LRNonStreamingLexerDef, LexerDef, RegexOptions, DEFAULT_REGEX_OPTIONS,
};
const RUST_FILE_EXT: &str = "rs";
lazy_static! {
static ref RE_TOKEN_ID: Regex = Regex::new(r"^[a-zA-Z_][a-zA-Z_0-9]*$").unwrap();
static ref GENERATED_PATHS: Mutex<HashSet<PathBuf>> = Mutex::new(HashSet::new());
}
pub enum LexerKind {
LRNonStreamingLexer,
}
/// Specify the visibility of the module generated by [CTLexerBuilder].
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum Visibility {
/// Module-level visibility only.
Private,
/// `pub`
Public,
/// `pub(super)`
PublicSuper,
/// `pub(self)`
PublicSelf,
/// `pub(crate)`
PublicCrate,
/// `pub(in {arg})`
PublicIn(String),
}
impl Visibility {
fn cow_str(&self) -> Cow<'static, str> {
match self {
Visibility::Private => Cow::from(""),
Visibility::Public => Cow::from("pub"),
Visibility::PublicSuper => Cow::from("pub(super)"),
Visibility::PublicSelf => Cow::from("pub(self)"),
Visibility::PublicCrate => Cow::from("pub(crate)"),
Visibility::PublicIn(data) => Cow::from(format!("pub(in {})", data)),
}
}
}
/// Specifies the [Rust Edition] that will be emitted during code generation.
///
/// [Rust Edition]: https://doc.rust-lang.org/edition-guide/rust-2021/index.html
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum RustEdition {
Rust2015,
Rust2018,
Rust2021,
}
/// A `CTLexerBuilder` allows one to specify the criteria for building a statically generated
/// lexer.
pub struct CTLexerBuilder<'a, LexerTypesT: LexerTypes = DefaultLexerTypes<u32>>
where
LexerTypesT::StorageT: Debug + Eq + Hash,
usize: num_traits::AsPrimitive<LexerTypesT::StorageT>,
{
lrpar_config: Option<Box<dyn Fn(CTParserBuilder<LexerTypesT>) -> CTParserBuilder<LexerTypesT>>>,
lexer_path: Option<PathBuf>,
output_path: Option<PathBuf>,
lexerkind: LexerKind,
mod_name: Option<&'a str>,
visibility: Visibility,
rust_edition: RustEdition,
rule_ids_map: Option<HashMap<String, LexerTypesT::StorageT>>,
allow_missing_terms_in_lexer: bool,
allow_missing_tokens_in_parser: bool,
regex_options: RegexOptions,
}
impl CTLexerBuilder<'_, DefaultLexerTypes<u32>> {
/// Create a new [CTLexerBuilder].
pub fn new() -> Self {
CTLexerBuilder::<DefaultLexerTypes<u32>>::new_with_lexemet()
}
}
impl<'a, LexerTypesT: LexerTypes> CTLexerBuilder<'a, LexerTypesT>
where
LexerTypesT::StorageT:
'static + Debug + Eq + Hash + PrimInt + Serialize + TryFrom<usize> + Unsigned,
usize: AsPrimitive<LexerTypesT::StorageT>,
{
/// Create a new [CTLexerBuilder].
///
/// `LexerTypesT::StorageT` must be an unsigned integer type (e.g. `u8`, `u16`) which is big enough
/// to index all the tokens, rules, and productions in the lexer and less than or equal in size
/// to `usize` (e.g. on a 64-bit machine `u128` would be too big). If you are lexing large
/// files, the additional storage requirements of larger integer types can be noticeable, and
/// in such cases it can be worth specifying a smaller type. `StorageT` defaults to `u32` if
/// unspecified.
///
/// # Examples
///
/// ```text
/// CTLexerBuilder::<DefaultLexerTypes<u8>>::new_with_lexemet()
/// .lexer_in_src_dir("grm.l", None)?
/// .build()?;
/// ```
pub fn new_with_lexemet() -> Self {
CTLexerBuilder {
lrpar_config: None,
lexer_path: None,
output_path: None,
lexerkind: LexerKind::LRNonStreamingLexer,
mod_name: None,
visibility: Visibility::Private,
rust_edition: RustEdition::Rust2021,
rule_ids_map: None,
allow_missing_terms_in_lexer: false,
allow_missing_tokens_in_parser: true,
regex_options: DEFAULT_REGEX_OPTIONS,
}
}
/// An optional convenience function to make it easier to create an (lrlex) lexer and (lrpar)
/// parser in one shot. The closure passed to this function will be called during
/// [CTLexerBuilder::build]: it will be passed an lrpar `CTParserBuilder` instance upon which
/// it can set whatever lrpar options are desired. [`CTLexerBuilder`] will then create both the
/// compiler and lexer and link them together as required.
///
/// # Examples
///
/// ```text
/// CTLexerBuilder:::new()
/// .lrpar_config(|ctp| {
/// ctp.yacckind(YaccKind::Grmtools)
/// .grammar_in_src_dir("calc.y")
/// .unwrap()
/// })
/// .lexer_in_src_dir("calc.l")?
/// .build()?;
/// ```
pub fn lrpar_config<F>(mut self, config_func: F) -> Self
where
F: 'static + Fn(CTParserBuilder<LexerTypesT>) -> CTParserBuilder<LexerTypesT>,
{
self.lrpar_config = Some(Box::new(config_func));
self
}
/// Set the input lexer path to a file relative to this project's `src` directory. This will
/// also set the output path (i.e. you do not need to call [CTLexerBuilder::output_path]).
///
/// For example if `a/b.l` is passed as `inp` then [CTLexerBuilder::build] will:
/// * use `src/a/b.l` as the input file.
/// * write output to a file which can then be imported by calling `lrlex_mod!("a/b.l")`.
/// * create a module in that output file named `b_l`.
///
/// You can override the output path and/or module name by calling
/// [CTLexerBuilder::output_path] and/or [CTLexerBuilder::mod_name], respectively, after
/// calling this function.
///
/// This is a convenience function that makes it easier to compile lexer files stored in a
/// project's `src/` directory: please see [CTLexerBuilder::build] for additional constraints
/// and information about the generated files. Note also that each `.l` file can only be
/// processed once using this function: if you want to generate multiple lexers from a single
/// `.l` file, you will need to use [CTLexerBuilder::output_path].
pub fn lexer_in_src_dir<P>(mut self, srcp: P) -> Result<Self, Box<dyn Error>>
where
P: AsRef<Path>,
{
if !srcp.as_ref().is_relative() {
return Err(format!(
"Lexer path '{}' must be a relative path.",
srcp.as_ref().to_str().unwrap_or("<invalid UTF-8>")
)
.into());
}
let mut lexp = current_dir()?;
lexp.push("src");
lexp.push(srcp.as_ref());
self.lexer_path = Some(lexp);
let mut outp = PathBuf::new();
outp.push(var("OUT_DIR").unwrap());
outp.push(srcp.as_ref().parent().unwrap().to_str().unwrap());
create_dir_all(&outp)?;
let mut leaf = srcp
.as_ref()
.file_name()
.unwrap()
.to_str()
.unwrap()
.to_owned();
write!(leaf, ".{}", RUST_FILE_EXT).ok();
outp.push(leaf);
Ok(self.output_path(outp))
}
/// Set the input lexer path to `inp`. If specified, you must also call
/// [CTLexerBuilder::output_path]. In general it is easier to use
/// [CTLexerBuilder::lexer_in_src_dir].
pub fn lexer_path<P>(mut self, inp: P) -> Self
where
P: AsRef<Path>,
{
self.lexer_path = Some(inp.as_ref().to_owned());
self
}
/// Set the output lexer path to `outp`. Note that there are no requirements on `outp`: the
/// file can exist anywhere you can create a valid [Path] to. However, if you wish to use
/// [crate::lrlex_mod!] you will need to make sure that `outp` is in
/// [std::env::var]`("OUT_DIR")` or one of its subdirectories.
pub fn output_path<P>(mut self, outp: P) -> Self
where
P: AsRef<Path>,
{
self.output_path = Some(outp.as_ref().to_owned());
self
}
/// Set the type of lexer to be generated to `lexerkind`.
pub fn lexerkind(mut self, lexerkind: LexerKind) -> Self {
self.lexerkind = lexerkind;
self
}
/// Set the generated module name to `mod_name`. If no module name is specified,
/// [`process_file`](#method.process_file) will attempt to create a sensible default based on
/// the input filename.
pub fn mod_name(mut self, mod_name: &'a str) -> Self {
self.mod_name = Some(mod_name);
self
}
/// Set the visibility of the generated module to `vis`. Defaults to `Visibility::Private`.
pub fn visibility(mut self, vis: Visibility) -> Self {
self.visibility = vis;
self
}
/// Sets the rust edition to be used for generated code. Defaults to the latest edition of
/// rust supported by grmtools.
pub fn rust_edition(mut self, edition: RustEdition) -> Self {
self.rust_edition = edition;
self
}
/// Set this lexer builder's map of rule IDs to `rule_ids_map`. By default, lexing rules have
/// arbitrary, but distinct, IDs. Setting the map of rule IDs (from rule names to `StorageT`)
/// allows users to synchronise a lexer and parser and to check that all rules are used by both
/// parts).
pub fn rule_ids_map<T: std::borrow::Borrow<HashMap<String, LexerTypesT::StorageT>> + Clone>(
mut self,
rule_ids_map: T,
) -> Self {
self.rule_ids_map = Some(rule_ids_map.borrow().to_owned());
self
}
/// Statically compile the `.l` file specified by [CTLexerBuilder::lexer_path()] into Rust,
/// placing the output into the file specified by [CTLexerBuilder::output_path()].
///
/// The generated module follows the form:
///
/// ```text
/// mod modname {
/// pub fn lexerdef() -> LexerDef<LexerTypesT> { ... }
///
/// ...
/// }
/// ```
///
/// where:
/// * `modname` is either:
/// * the module name specified by [CTLexerBuilder::mod_name()]
/// * or, if no module name was explicitly specified, then for the file `/a/b/c.l` the
/// module name is `c_l` (i.e. the file's leaf name, minus its extension, with a prefix of
/// `_l`).
pub fn build(mut self) -> Result<CTLexer, Box<dyn Error>> {
if let Some(ref lrcfg) = self.lrpar_config {
let mut ctp = CTParserBuilder::<LexerTypesT>::new();
ctp = lrcfg(ctp);
let map = ctp.build()?;
self.rule_ids_map = Some(map.token_map().to_owned());
}
let lexerp = self
.lexer_path
.as_ref()
.expect("lexer_path must be specified before processing.");
let outp = self
.output_path
.as_ref()
.expect("output_path must be specified before processing.");
{
let mut lk = GENERATED_PATHS.lock().unwrap();
if lk.contains(outp.as_path()) {
return Err(format!("Generating two lexers to the same path ('{}') is not allowed: use CTLexerBuilder::output_path (and, optionally, CTLexerBuilder::mod_name) to differentiate them.", &outp.to_str().unwrap()).into());
}
lk.insert(outp.clone());
}
let lex_src = read_to_string(lexerp)
.map_err(|e| format!("When reading '{}': {e}", lexerp.display()))?;
let line_cache = NewlineCache::from_str(&lex_src).unwrap();
let mut lexerdef: Box<dyn LexerDef<LexerTypesT>> = match self.lexerkind {
LexerKind::LRNonStreamingLexer => Box::new(
LRNonStreamingLexerDef::<LexerTypesT>::new_with_options(
&lex_src,
self.regex_options.clone(),
)
.map_err(|errs| {
errs.iter()
.map(|e| {
if let Some((line, column)) = line_cache.byte_to_line_num_and_col_num(
&lex_src,
e.spans().first().unwrap().start(),
) {
format!("{} at line {line} column {column}", e)
} else {
format!("{}", e)
}
})
.collect::<Vec<_>>()
.join("\n")
})?,
),
};
let (missing_from_lexer, missing_from_parser) = match self.rule_ids_map {
Some(ref rim) => {
// Convert from HashMap<String, _> to HashMap<&str, _>
let owned_map = rim
.iter()
.map(|(x, y)| (&**x, *y))
.collect::<HashMap<_, _>>();
let (x, y) = lexerdef.set_rule_ids(&owned_map);
(
x.map(|a| a.iter().map(|&b| b.to_string()).collect::<HashSet<_>>()),
y.map(|a| a.iter().map(|&b| b.to_string()).collect::<HashSet<_>>()),
)
}
None => (None, None),
};
let mut has_unallowed_missing = false;
if !self.allow_missing_terms_in_lexer {
if let Some(ref mfl) = missing_from_lexer {
eprintln!("Error: the following tokens are used in the grammar but are not defined in the lexer:");
for n in mfl {
eprintln!(" {}", n);
}
has_unallowed_missing = true;
}
}
if !self.allow_missing_tokens_in_parser {
if let Some(ref mfp) = missing_from_parser {
eprintln!("Error: the following tokens are defined in the lexer but not used in the grammar:");
for n in mfp {
eprintln!(" {}", n);
}
has_unallowed_missing = true;
}
}
if has_unallowed_missing {
fs::remove_file(outp).ok();
panic!();
}
let mod_name = match self.mod_name {
Some(s) => s.to_owned(),
None => {
// The user hasn't specified a module name, so we create one automatically: what we
// do is strip off all the filename extensions (note that it's likely that inp ends
// with `l.rs`, so we potentially have to strip off more than one extension) and
// then add `_l` to the end.
let mut stem = lexerp.to_str().unwrap();
loop {
let new_stem = Path::new(stem).file_stem().unwrap().to_str().unwrap();
if stem == new_stem {
break;
}
stem = new_stem;
}
format!("{}_l", stem)
}
};
let mut outs = String::new();
//
// Header
let (lexerdef_name, lexerdef_type) = match self.lexerkind {
LexerKind::LRNonStreamingLexer => (
"LRNonStreamingLexerDef",
format!(
"LRNonStreamingLexerDef<{lexertypest}>",
lexertypest = type_name::<LexerTypesT>()
),
),
};
write!(
outs,
"{mod_vis} mod {mod_name} {{
use lrlex::{{LexerDef, LRNonStreamingLexerDef, Rule, StartState}};
#[allow(dead_code)]
pub fn lexerdef() -> {lexerdef_type} {{
",
mod_vis = self.visibility.cow_str(),
mod_name = mod_name,
lexerdef_type = lexerdef_type
)
.ok();
outs.push_str(&format!(
"let regex_options = ::lrlex::RegexOptions {{
dot_matches_new_line: {dot_matches_new_line:?},
multi_line: {multi_line:?},
octal: {octal:?},
case_insensitive: {case_insensitive:?},
unicode: {unicode:?},
swap_greed: {swap_greed:?},
ignore_whitespace: {ignore_whitespace:?},
size_limit: {size_limit:?},
dfa_size_limit: {dfa_size_limit:?},
nest_limit: {nest_limit:?},
}};",
dot_matches_new_line = self.regex_options.dot_matches_new_line,
multi_line = self.regex_options.multi_line,
octal = self.regex_options.octal,
case_insensitive = self.regex_options.case_insensitive,
unicode = self.regex_options.unicode,
swap_greed = self.regex_options.swap_greed,
ignore_whitespace = self.regex_options.ignore_whitespace,
size_limit = self.regex_options.size_limit,
dfa_size_limit = self.regex_options.dfa_size_limit,
nest_limit = self.regex_options.nest_limit,
));
outs.push_str(" let start_states: Vec<StartState> = vec![");
for ss in lexerdef.iter_start_states() {
let state_name = &ss.name;
write!(
outs,
"
StartState::new({}, {}, {}, ::cfgrammar::Span::new({}, {})),",
ss.id,
quote!(#state_name),
ss.exclusive,
ss.name_span.start(),
ss.name_span.end()
)
.ok();
}
outs.push_str("\n ];\n");
outs.push_str(" let rules = vec![");
// Individual rules
for r in lexerdef.iter_rules() {
let tok_id = match r.tok_id {
Some(ref t) => format!("Some({:?})", t),
None => "None".to_owned(),
};
let n = match r.name() {
Some(ref n) => format!("Some({}.to_string())", quote!(#n)),
None => "None".to_owned(),
};
let target_state = match &r.target_state() {
Some((id, op)) => format!("Some(({}, ::lrlex::StartStateOperation::{:?}))", id, op),
None => "None".to_owned(),
};
let n_span = format!(
"::cfgrammar::Span::new({}, {})",
r.name_span().start(),
r.name_span().end()
);
let regex = &r.re_str;
let start_states = r.start_states();
write!(
outs,
"
Rule::new(::lrlex::unstable_api::InternalPublicApi, {}, {}, {}, {}.to_string(), {}.to_vec(), {}, ®ex_options).unwrap(),",
tok_id,
n,
n_span,
quote!(#regex),
quote!([#(#start_states),*]),
target_state,
)
.ok();
}
// Footer
write!(
outs,
"
];
{lexerdef_name}::from_rules(start_states, rules)
}}
",
lexerdef_name = lexerdef_name
)
.ok();
// Token IDs
if let Some(ref rim) = self.rule_ids_map {
for (n, id) in rim {
if RE_TOKEN_ID.is_match(n) {
write!(
outs,
"#[allow(dead_code)]\npub const T_{}: {} = {:?};\n",
n.to_ascii_uppercase(),
type_name::<LexerTypesT::StorageT>(),
*id
)
.ok();
}
}
}
// Footer
outs.push('}');
// If the file we're about to write out already exists with the same contents, then we
// don't overwrite it (since that will force a recompile of the file, and relinking of the
// binary etc).
if let Ok(curs) = read_to_string(outp) {
if curs == outs {
return Ok(CTLexer {
missing_from_lexer,
missing_from_parser,
});
}
}
let mut f = File::create(outp)?;
f.write_all(outs.as_bytes())?;
Ok(CTLexer {
missing_from_lexer,
missing_from_parser,
})
}
/// Given the filename `a/b.l` as input, statically compile the file `src/a/b.l` into a Rust
/// module which can then be imported using `lrlex_mod!("a/b.l")`. This is a convenience
/// function around [`process_file`](struct.CTLexerBuilder.html#method.process_file) which makes
/// it easier to compile `.l` files stored in a project's `src/` directory: please see
/// [`process_file`](#method.process_file) for additional constraints and information about the
/// generated files.
#[deprecated(
since = "0.11.0",
note = "Please use lexer_in_src_dir() and build() instead"
)]
#[allow(deprecated)]
pub fn process_file_in_src(
self,
srcp: &str,
) -> Result<(Option<HashSet<String>>, Option<HashSet<String>>), Box<dyn Error>> {
let mut inp = current_dir()?;
inp.push("src");
inp.push(srcp);
let mut outp = PathBuf::new();
outp.push(var("OUT_DIR").unwrap());
outp.push(Path::new(srcp).parent().unwrap().to_str().unwrap());
create_dir_all(&outp)?;
let mut leaf = Path::new(srcp)
.file_name()
.unwrap()
.to_str()
.unwrap()
.to_owned();
write!(leaf, ".{}", RUST_FILE_EXT).ok();
outp.push(leaf);
self.process_file(inp, outp)
}
/// Statically compile the `.l` file `inp` into Rust, placing the output into the file `outp`.
/// The latter defines a module as follows:
///
/// ```text
/// mod modname {
/// pub fn lexerdef() -> LexerDef<LexerTypesT::StorageT> { ... }
///
/// ...
/// }
/// ```
///
/// where:
/// * `modname` is either:
/// * the module name specified [`mod_name`](#method.mod_name)
/// * or, if no module name was explicitly specified, then for the file `/a/b/c.l` the
/// module name is `c_l` (i.e. the file's leaf name, minus its extension, with a prefix of
/// `_l`).
#[deprecated(
since = "0.11.0",
note = "Please use lexer_in_src_dir() and build() instead"
)]
pub fn process_file<P, Q>(
mut self,
inp: P,
outp: Q,
) -> Result<(Option<HashSet<String>>, Option<HashSet<String>>), Box<dyn Error>>
where
P: AsRef<Path>,
Q: AsRef<Path>,
{
self.lexer_path = Some(inp.as_ref().to_owned());
self.output_path = Some(outp.as_ref().to_owned());
let cl = self.build()?;
Ok((
cl.missing_from_lexer().map(|x| x.to_owned()),
cl.missing_from_parser().map(|x| x.to_owned()),
))
}
/// If passed false, tokens used in the grammar but not defined in the lexer will cause a
/// panic at lexer generation time. Defaults to false.
pub fn allow_missing_terms_in_lexer(mut self, allow: bool) -> Self {
self.allow_missing_terms_in_lexer = allow;
self
}
/// If passed false, tokens defined in the lexer but not used in the grammar will cause a
/// panic at lexer generation time. Defaults to true (since lexers sometimes define tokens such
/// as reserved words, which are intentionally not in the grammar).
pub fn allow_missing_tokens_in_parser(mut self, allow: bool) -> Self {
self.allow_missing_tokens_in_parser = allow;
self
}
/// Sets the `regex::RegexBuilder` option of the same name.
/// The default value is `true`.
pub fn dot_matches_new_line(mut self, flag: bool) -> Self {
self.regex_options.dot_matches_new_line = flag;
self
}
/// Sets the `regex::RegexBuilder` option of the same name.
/// The default value is `true`.
pub fn multi_line(mut self, flag: bool) -> Self {
self.regex_options.multi_line = flag;
self
}
/// Sets the `regex::RegexBuilder` option of the same name.
/// The default value is `true`.
pub fn octal(mut self, flag: bool) -> Self {
self.regex_options.octal = flag;
self
}
/// Sets the `regex::RegexBuilder` option of the same name.
/// Default value is specified by regex.
pub fn swap_greed(mut self, flag: bool) -> Self {
self.regex_options.swap_greed = Some(flag);
self
}
/// Sets the `regex::RegexBuilder` option of the same name.
/// Default value is specified by regex.
pub fn ignore_whitespace(mut self, flag: bool) -> Self {
self.regex_options.ignore_whitespace = Some(flag);
self
}
/// Sets the `regex::RegexBuilder` option of the same name.
/// Default value is specified by regex.
pub fn unicode(mut self, flag: bool) -> Self {
self.regex_options.unicode = Some(flag);
self
}
/// Sets the `regex::RegexBuilder` option of the same name.
/// Default value is specified by regex.
pub fn case_insensitive(mut self, flag: bool) -> Self {
self.regex_options.case_insensitive = Some(flag);
self
}
/// Sets the `regex::RegexBuilder` option of the same name.
/// Default value is specified by regex.
pub fn size_limit(mut self, sz: usize) -> Self {
self.regex_options.size_limit = Some(sz);
self
}
/// Sets the `regex::RegexBuilder` option of the same name.
/// Default value is specified by regex.
pub fn dfa_size_limit(mut self, sz: usize) -> Self {
self.regex_options.dfa_size_limit = Some(sz);
self
}
/// Sets the `regex::RegexBuilder` option of the same name.
/// Default value is specified by regex.
pub fn nest_limit(mut self, lim: u32) -> Self {
self.regex_options.nest_limit = Some(lim);
self
}
}
/// An interface to the result of [CTLexerBuilder::build()].
pub struct CTLexer {
missing_from_lexer: Option<HashSet<String>>,
missing_from_parser: Option<HashSet<String>>,
}
impl CTLexer {
fn missing_from_lexer(&self) -> Option<&HashSet<String>> {
self.missing_from_lexer.as_ref()
}
fn missing_from_parser(&self) -> Option<&HashSet<String>> {
self.missing_from_parser.as_ref()
}
}
/// Create a Rust module named `mod_name` that can be imported with
/// [`lrlex_mod!(mod_name)`](crate::lrlex_mod). The module contains one `const` `StorageT` per
/// token in `token_map`, with the token prefixed by `T_`. For example with `StorageT` `u8`,
/// `mod_name` `x`, and `token_map` `HashMap{"ID": 0, "INT": 1}` the generated module will look
/// roughly as follows:
///
/// ```rust,ignore
/// mod x {
/// pub const T_ID: u8 = 0;
/// pub const T_INT: u8 = 1;
/// }
/// ```
///
/// You can optionally remap names (for example, because the parser's token names do not lead to
/// valid Rust identifiers) by specifying the `rename_map` `HashMap`. For example, if `token_map`
/// is `HashMap{"+": 0, "ID": 1}` and `rename_map` is `HashMap{"+": "PLUS"}` then the generated
/// module will look roughly as follows:
///
/// ```rust,ignore
/// mod x {
/// pub const T_PLUS: u8 = 0;
/// pub const T_ID: u8 = 1;
/// }
/// ```
pub fn ct_token_map<StorageT: Display>(
mod_name: &str,
token_map: &HashMap<String, StorageT>,
rename_map: Option<&HashMap<&str, &str>>,
) -> Result<(), Box<dyn Error>> {
// Record the time that this version of lrlex was built. If the source code changes and rustc
// forces a recompile, this will change this value, causing anything which depends on this
// build of lrlex to be recompiled too.
let mut outs = String::new();
let timestamp = env!("VERGEN_BUILD_TIMESTAMP");
write!(
outs,
"// lrlex build time: {}\n\nmod {} {{\n",
quote!(#timestamp),
mod_name
)
.ok();
outs.push_str(
&token_map
.iter()
.map(|(k, v)| {
let k = match rename_map {
Some(rmap) => *rmap.get(k.as_str()).unwrap_or(&k.as_str()),
_ => k,
};
format!(
" #[allow(dead_code)] pub const T_{}: {} = {};",
k,
type_name::<StorageT>(),
v
)
})
.collect::<Vec<_>>()
.join("\n"),
);
outs.push_str("\n}");
let mut outp = PathBuf::from(var("OUT_DIR")?);
outp.push(mod_name);
outp.set_extension("rs");
// If the file we're about to write out already exists with the same contents, then we
// don't overwrite it (since that will force a recompile of the file, and relinking of the
// binary etc).
if let Ok(curs) = read_to_string(&outp) {
if curs == outs {
return Ok(());
}
}
let mut f = File::create(outp)?;
f.write_all(outs.as_bytes())?;
Ok(())
}