cfgrammar/yacc/
grammar.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
#![allow(clippy::derive_partial_eq_without_eq)]
use std::{cell::RefCell, collections::HashMap, fmt::Write};

use num_traits::{AsPrimitive, PrimInt, Unsigned};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
use vob::Vob;

use super::{ast, firsts::YaccFirsts, follows::YaccFollows, parser::YaccGrammarResult, YaccKind};
use crate::{PIdx, RIdx, SIdx, Span, Symbol, TIdx};

const START_RULE: &str = "^";
const IMPLICIT_RULE: &str = "~";
const IMPLICIT_START_RULE: &str = "^~";

pub type PrecedenceLevel = u64;
#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct Precedence {
    pub level: PrecedenceLevel,
    pub kind: AssocKind,
}

#[derive(Clone, Copy, Debug, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum AssocKind {
    Left,
    Right,
    Nonassoc,
}

/// Representation of a `YaccGrammar`. See the [top-level documentation](../../index.html) for the
/// guarantees this struct makes about rules, tokens, productions, and symbols.
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct YaccGrammar<StorageT = u32> {
    /// How many rules does this grammar have?
    rules_len: RIdx<StorageT>,
    /// A mapping from `RIdx` -> `(Span, String)`.
    rule_names: Box<[(String, Span)]>,
    /// A mapping from `TIdx` -> `Option<(Span, String)>`. Every user-specified token will have a name,
    /// but tokens inserted by cfgrammar (e.g. the EOF token) won't.
    token_names: Box<[Option<(Span, String)>]>,
    /// A mapping from `TIdx` -> `Option<Precedence>`
    token_precs: Box<[Option<Precedence>]>,
    /// A mapping from `TIdx` -> `Option<String>` for the %epp declaration, giving pretty-printed
    /// versions of token names that can be presented to the user in case of an error. Every
    /// user-specified token will have a name that can be presented to the user (if a token doesn't
    /// have an %epp entry, the token name will be used in lieu), but tokens inserted by cfgrammar
    /// (e.g. the EOF token) won't.
    token_epp: Box<[Option<String>]>,
    /// How many tokens does this grammar have?
    tokens_len: TIdx<StorageT>,
    /// The offset of the EOF token.
    eof_token_idx: TIdx<StorageT>,
    /// How many productions does this grammar have?
    prods_len: PIdx<StorageT>,
    /// Which production is the sole production of the start rule?
    start_prod: PIdx<StorageT>,
    /// A list of all productions.
    prods: Box<[Box<[Symbol<StorageT>]>]>,
    /// A mapping from rules to their productions. Note that 1) the order of rules is identical to
    /// that of `rule_names` 2) every rule will have at least 1 production 3) productions
    /// are not necessarily stored sequentially.
    rules_prods: Box<[Box<[PIdx<StorageT>]>]>,
    /// A mapping from productions to their corresponding rule indexes.
    prods_rules: Box<[RIdx<StorageT>]>,
    /// The precedence of each production.
    prod_precs: Box<[Option<Precedence>]>,
    /// The index of the rule added for implicit tokens, if they were specified; otherwise
    /// `None`.
    implicit_rule: Option<RIdx<StorageT>>,
    /// User defined Rust programs which can be called within actions
    actions: Box<[Option<String>]>,
    /// A `(name, type)` pair defining an extra parameter to pass to action functions.
    parse_param: Option<(String, String)>,
    /// Lifetimes for `param_args`
    programs: Option<String>,
    /// The actiontypes of rules (one per rule).
    actiontypes: Box<[Option<String>]>,
    /// Tokens marked as %avoid_insert (if any).
    avoid_insert: Option<Vob>,
    /// How many shift/reduce conflicts the grammar author expected (if any).
    expect: Option<usize>,
    /// How many reduce/reduce conflicts the grammar author expected (if any).
    expectrr: Option<usize>,
}

// Internally, we assume that a grammar's start rule has a single production. Since we manually
// create the start rule ourselves (without relying on user input), this is a safe assumption.

impl YaccGrammar<u32> {
    pub fn new(yacc_kind: YaccKind, s: &str) -> YaccGrammarResult<Self> {
        YaccGrammar::new_with_storaget(yacc_kind, s)
    }
}

impl<StorageT: 'static + PrimInt + Unsigned> YaccGrammar<StorageT>
where
    usize: AsPrimitive<StorageT>,
{
    /// Takes as input a Yacc grammar of [`YaccKind`](enum.YaccKind.html) as a `String` `s` and returns a
    /// [`YaccGrammar`](grammar/struct.YaccGrammar.html) (or
    /// ([`YaccGrammarError`](grammar/enum.YaccGrammarError.html) on error).
    ///
    /// As we're compiling the `YaccGrammar`, we add a new start rule (which we'll refer to as `^`,
    /// though the actual name is a fresh name that is guaranteed to be unique) that references the
    /// user defined start rule.
    pub fn new_with_storaget(yacc_kind: YaccKind, s: &str) -> YaccGrammarResult<Self> {
        let ast_validation = ast::ASTWithValidityInfo::new(yacc_kind, s);
        Self::new_from_ast_with_validity_info(yacc_kind, &ast_validation)
    }

    pub fn new_from_ast_with_validity_info(
        yacc_kind: YaccKind,
        ast_validation: &ast::ASTWithValidityInfo,
    ) -> YaccGrammarResult<Self> {
        if !ast_validation.is_valid() {
            return Err(ast_validation.errors().to_owned());
        }
        let ast = ast_validation.ast();
        // Check that StorageT is big enough to hold RIdx/PIdx/SIdx/TIdx values; after these
        // checks we can guarantee that things like RIdx(ast.rules.len().as_()) are safe.
        if ast.rules.len() > num_traits::cast(StorageT::max_value()).unwrap() {
            panic!("StorageT is not big enough to store this grammar's rules.");
        }
        if ast.tokens.len() > num_traits::cast(StorageT::max_value()).unwrap() {
            panic!("StorageT is not big enough to store this grammar's tokens.");
        }
        if ast.prods.len() > num_traits::cast(StorageT::max_value()).unwrap() {
            panic!("StorageT is not big enough to store this grammar's productions.");
        }
        for p in &ast.prods {
            if p.symbols.len() > num_traits::cast(StorageT::max_value()).unwrap() {
                panic!("StorageT is not big enough to store the symbols of at least one of this grammar's productions.");
            }
        }

        let mut rule_names: Vec<(String, Span)> = Vec::with_capacity(ast.rules.len() + 1);

        // Generate a guaranteed unique start rule name. We simply keep making the string longer
        // until we've hit something unique (at the very worst, this will require looping for as
        // many times as there are rules). We use the same technique later for unique end
        // token and whitespace names.
        let mut start_rule = START_RULE.to_string();
        while ast.rules.get(&start_rule).is_some() {
            start_rule += START_RULE;
        }
        rule_names.push((start_rule.clone(), Span::new(0, 0)));

        let implicit_rule;
        let implicit_start_rule;
        match yacc_kind {
            YaccKind::Original(_) | YaccKind::Grmtools => {
                implicit_rule = None;
                implicit_start_rule = None;
            }
            YaccKind::Eco => {
                if ast.implicit_tokens.is_some() {
                    let mut n1 = IMPLICIT_RULE.to_string();
                    while ast.rules.get(&n1).is_some() {
                        n1 += IMPLICIT_RULE;
                    }
                    rule_names.push((n1.clone(), Span::new(0, 0)));
                    implicit_rule = Some(n1);
                    let mut n2 = IMPLICIT_START_RULE.to_string();
                    while ast.rules.get(&n2).is_some() {
                        n2 += IMPLICIT_START_RULE;
                    }
                    rule_names.push((n2.clone(), Span::new(0, 0)));
                    implicit_start_rule = Some(n2);
                } else {
                    implicit_rule = None;
                    implicit_start_rule = None;
                }
            }
        };

        for (
            k,
            ast::Rule {
                name: (_, name_span),
                ..
            },
        ) in &ast.rules
        {
            rule_names.push((k.clone(), *name_span));
        }
        let mut rules_prods: Vec<Vec<PIdx<StorageT>>> = Vec::with_capacity(rule_names.len());
        let mut rule_map = HashMap::<String, RIdx<StorageT>>::new();
        for (i, (v, _)) in rule_names.iter().enumerate() {
            rules_prods.push(Vec::new());
            rule_map.insert(v.clone(), RIdx(i.as_()));
        }

        let mut token_names: Vec<Option<(Span, String)>> = Vec::with_capacity(ast.tokens.len() + 1);
        let mut token_precs: Vec<Option<Precedence>> = Vec::with_capacity(ast.tokens.len() + 1);
        let mut token_epp: Vec<Option<String>> = Vec::with_capacity(ast.tokens.len() + 1);
        for (i, k) in ast.tokens.iter().enumerate() {
            token_names.push(Some((ast.spans[i], k.clone())));
            token_precs.push(ast.precs.get(k).map(|(prec, _)| prec).cloned());
            token_epp.push(Some(
                ast.epp.get(k).map(|(_, (s, _))| s).unwrap_or(k).clone(),
            ));
        }
        let eof_token_idx = TIdx(token_names.len().as_());
        token_names.push(None);
        token_precs.push(None);
        token_epp.push(None);
        let mut token_map = HashMap::<String, TIdx<StorageT>>::new();
        for (i, v) in token_names.iter().enumerate() {
            if let Some((_, n)) = v.as_ref() {
                token_map.insert(n.clone(), TIdx(i.as_()));
            }
        }

        // In order to avoid fiddling about with production indices from the AST, we simply map
        // tem 1:1 to grammar indices. That means that any new productions are added to the *end*
        // of the list of productions.
        let mut prods = vec![None; ast.prods.len()];
        let mut prod_precs: Vec<Option<Option<Precedence>>> = vec![None; ast.prods.len()];
        let mut prods_rules = vec![None; ast.prods.len()];
        let mut actions = vec![None; ast.prods.len()];
        let mut actiontypes = vec![None; rule_names.len()];
        let (start_name, _) = ast.start.as_ref().unwrap();
        for (astrulename, _) in &rule_names {
            let ridx = rule_map[astrulename];
            if astrulename == &start_rule {
                // Add the special start rule which has a single production which references a
                // single rule.
                rules_prods[usize::from(ridx)].push(PIdx(prods.len().as_()));
                let start_prod = match implicit_start_rule {
                    None => {
                        // Add ^: S;
                        vec![Symbol::Rule(rule_map[start_name])]
                    }
                    Some(ref s) => {
                        // An implicit rule has been specified, so the special start rule
                        // needs to reference the intermediate start rule required. Therefore add:
                        //   ^: ^~;
                        vec![Symbol::Rule(rule_map[s])]
                    }
                };
                prods.push(Some(start_prod));
                prod_precs.push(Some(None));
                prods_rules.push(Some(ridx));
                actions.push(None);
                continue;
            } else if implicit_start_rule
                .as_ref()
                .map_or(false, |s| s == astrulename)
            {
                // Add the intermediate start rule (handling implicit tokens at the beginning of
                // the file):
                //   ^~: ~ S;
                rules_prods[usize::from(rule_map[astrulename])].push(PIdx(prods.len().as_()));
                prods.push(Some(vec![
                    Symbol::Rule(rule_map[implicit_rule.as_ref().unwrap()]),
                    Symbol::Rule(rule_map[start_name]),
                ]));
                prod_precs.push(Some(None));
                prods_rules.push(Some(ridx));
                continue;
            } else if implicit_rule.as_ref().map_or(false, |s| s == astrulename) {
                // Add the implicit rule: ~: "IMPLICIT_TOKEN_1" ~ | ... | "IMPLICIT_TOKEN_N" ~ | ;
                let implicit_prods = &mut rules_prods[usize::from(rule_map[astrulename])];
                // Add a production for each implicit token
                for (t, _) in ast.implicit_tokens.as_ref().unwrap().iter() {
                    implicit_prods.push(PIdx(prods.len().as_()));
                    prods.push(Some(vec![Symbol::Token(token_map[t]), Symbol::Rule(ridx)]));
                    prod_precs.push(Some(None));
                    prods_rules.push(Some(ridx));
                }
                // Add an empty production
                implicit_prods.push(PIdx(prods.len().as_()));
                prods.push(Some(vec![]));
                prod_precs.push(Some(None));
                prods_rules.push(Some(ridx));
                continue;
            } else {
                actiontypes[usize::from(ridx)] = ast.rules[astrulename].actiont.clone();
            }

            let rule = &mut rules_prods[usize::from(ridx)];
            for &pidx in &ast.rules[astrulename].pidxs {
                let astprod = &ast.prods[pidx];
                let mut prod = Vec::with_capacity(astprod.symbols.len());
                for astsym in &astprod.symbols {
                    match *astsym {
                        ast::Symbol::Rule(ref n, _) => {
                            prod.push(Symbol::Rule(rule_map[n]));
                        }
                        ast::Symbol::Token(ref n, _) => {
                            prod.push(Symbol::Token(token_map[n]));
                            if let Some(implicit_rule) = &implicit_rule {
                                prod.push(Symbol::Rule(rule_map[implicit_rule]));
                            }
                        }
                    };
                }
                let mut prec = None;
                if let Some(ref n) = astprod.precedence {
                    prec = Some(ast.precs[n]);
                } else {
                    for astsym in astprod.symbols.iter().rev() {
                        if let ast::Symbol::Token(ref n, _) = *astsym {
                            if let Some(p) = ast.precs.get(n) {
                                prec = Some(*p);
                            }
                            break;
                        }
                    }
                }
                (*rule).push(PIdx(pidx.as_()));
                prods[pidx] = Some(prod);
                prod_precs[pidx] = Some(prec.map(|(prec, _)| prec));
                prods_rules[pidx] = Some(ridx);
                if let Some(ref s) = astprod.action {
                    actions[pidx] = Some(s.clone());
                }
            }
        }

        let avoid_insert = if let Some(ai) = &ast.avoid_insert {
            let mut aiv = Vob::from_elem(false, token_names.len());
            for n in ai.keys() {
                aiv.set(usize::from(token_map[n]), true);
            }
            Some(aiv)
        } else {
            None
        };

        assert!(!token_names.is_empty());
        assert!(!rule_names.is_empty());
        Ok(YaccGrammar {
            rules_len: RIdx(rule_names.len().as_()),
            rule_names: rule_names.into_boxed_slice(),
            tokens_len: TIdx(token_names.len().as_()),
            eof_token_idx,
            token_names: token_names.into_boxed_slice(),
            token_precs: token_precs.into_boxed_slice(),
            token_epp: token_epp.into_boxed_slice(),
            prods_len: PIdx(prods.len().as_()),
            start_prod: rules_prods[usize::from(rule_map[&start_rule])][0],
            rules_prods: rules_prods
                .iter()
                .map(|x| x.iter().copied().collect())
                .collect(),
            prods_rules: prods_rules.into_iter().map(Option::unwrap).collect(),
            prods: prods
                .into_iter()
                .map(|x| x.unwrap().into_boxed_slice())
                .collect(),
            prod_precs: prod_precs.into_iter().map(Option::unwrap).collect(),
            implicit_rule: implicit_rule.map(|x| rule_map[&x]),
            actions: actions.into_boxed_slice(),
            parse_param: ast.parse_param.clone(),
            programs: ast.programs.clone(),
            avoid_insert,
            actiontypes: actiontypes.into_boxed_slice(),
            expect: ast.expect.map(|(n, _)| n),
            expectrr: ast.expectrr.map(|(n, _)| n),
        })
    }

    /// How many productions does this grammar have?
    pub fn prods_len(&self) -> PIdx<StorageT> {
        self.prods_len
    }

    /// Return an iterator which produces (in order from `0..self.prods_len()`) all this
    /// grammar's valid `PIdx`s.
    pub fn iter_pidxs(&self) -> impl Iterator<Item = PIdx<StorageT>> {
        // We can use as_ safely, because we know that we're only generating integers from
        // 0..self.rules_len() and, since rules_len() returns an RIdx<StorageT>, then by
        // definition the integers we're creating fit within StorageT.
        Box::new((0..usize::from(self.prods_len())).map(|x| PIdx(x.as_())))
    }

    /// Get the sequence of symbols for production `pidx`. Panics if `pidx` doesn't exist.
    pub fn prod(&self, pidx: PIdx<StorageT>) -> &[Symbol<StorageT>] {
        &self.prods[usize::from(pidx)]
    }

    /// How many symbols does production `pidx` have? Panics if `pidx` doesn't exist.
    pub fn prod_len(&self, pidx: PIdx<StorageT>) -> SIdx<StorageT> {
        // Since we've already checked that StorageT can store all the symbols for every production
        // in the grammar, the call to as_ is safe.
        SIdx(self.prods[usize::from(pidx)].len().as_())
    }

    /// Return the rule index of the production `pidx`. Panics if `pidx` doesn't exist.
    pub fn prod_to_rule(&self, pidx: PIdx<StorageT>) -> RIdx<StorageT> {
        self.prods_rules[usize::from(pidx)]
    }

    /// Return the precedence of production `pidx` (where `None` indicates "no precedence specified").
    /// Panics if `pidx` doesn't exist.
    pub fn prod_precedence(&self, pidx: PIdx<StorageT>) -> Option<Precedence> {
        self.prod_precs[usize::from(pidx)]
    }

    /// Return the production index of the start rule's sole production (for Yacc grammars the
    /// start rule is defined to have precisely one production).
    pub fn start_prod(&self) -> PIdx<StorageT> {
        self.start_prod
    }

    /// How many rules does this grammar have?
    pub fn rules_len(&self) -> RIdx<StorageT> {
        self.rules_len
    }

    /// Return an iterator which produces (in order from `0..self.rules_len()`) all this
    /// grammar's valid `RIdx`s.
    pub fn iter_rules(&self) -> impl Iterator<Item = RIdx<StorageT>> {
        // We can use as_ safely, because we know that we're only generating integers from
        // 0..self.rules_len() and, since rules_len() returns an RIdx<StorageT>, then by
        // definition the integers we're creating fit within StorageT.
        Box::new((0..usize::from(self.rules_len())).map(|x| RIdx(x.as_())))
    }

    /// Return the productions for rule `ridx`. Panics if `ridx` doesn't exist.
    pub fn rule_to_prods(&self, ridx: RIdx<StorageT>) -> &[PIdx<StorageT>] {
        &self.rules_prods[usize::from(ridx)]
    }

    /// Return the name of rule `ridx`. Panics if `ridx` doesn't exist.
    #[deprecated(since = "0.13.0", note = "Please use rule_name_str instead")]
    pub fn rule_name(&self, ridx: RIdx<StorageT>) -> &str {
        self.rule_name_str(ridx)
    }

    /// Return the name of rule `ridx`. Panics if `ridx` doesn't exist.
    pub fn rule_name_str(&self, ridx: RIdx<StorageT>) -> &str {
        let (name, _) = &self.rule_names[usize::from(ridx)];
        name.as_str()
    }

    /// Return the span of rule `ridx`. Panics if `ridx` doesn't exist.
    pub fn rule_name_span(&self, ridx: RIdx<StorageT>) -> Span {
        let (_, span) = self.rule_names[usize::from(ridx)];
        span
    }

    /// Return the `RIdx` of the implict rule if it exists, or `None` otherwise.
    pub fn implicit_rule(&self) -> Option<RIdx<StorageT>> {
        self.implicit_rule
    }

    /// Return the index of the rule named `n` or `None` if it doesn't exist.
    pub fn rule_idx(&self, n: &str) -> Option<RIdx<StorageT>> {
        self.rule_names
            .iter()
            .position(|(x, _)| x == n)
            // The call to as_() is safe because rule_names is guaranteed to be
            // small enough to fit into StorageT
            .map(|x| RIdx(x.as_()))
    }

    /// What is the index of the start rule? Note that cfgrammar will have inserted at least one
    /// rule "above" the user's start rule.
    pub fn start_rule_idx(&self) -> RIdx<StorageT> {
        self.prod_to_rule(self.start_prod)
    }

    /// How many tokens does this grammar have?
    pub fn tokens_len(&self) -> TIdx<StorageT> {
        self.tokens_len
    }

    /// Return an iterator which produces (in order from `0..self.tokens_len()`) all this
    /// grammar's valid `TIdx`s.
    pub fn iter_tidxs(&self) -> impl Iterator<Item = TIdx<StorageT>> {
        // We can use as_ safely, because we know that we're only generating integers from
        // 0..self.rules_len() and, since rules_len() returns an TIdx<StorageT>, then by
        // definition the integers we're creating fit within StorageT.
        Box::new((0..usize::from(self.tokens_len())).map(|x| TIdx(x.as_())))
    }

    /// Return the index of the end token.
    pub fn eof_token_idx(&self) -> TIdx<StorageT> {
        self.eof_token_idx
    }

    /// Return the name of token `tidx` (where `None` indicates "the rule has no name"). Panics if
    /// `tidx` doesn't exist.
    pub fn token_name(&self, tidx: TIdx<StorageT>) -> Option<&str> {
        self.token_names[usize::from(tidx)]
            .as_ref()
            .map(|(_, x)| x.as_str())
    }

    /// Return the precedence of token `tidx` (where `None` indicates "no precedence specified").
    /// Panics if `tidx` doesn't exist.
    pub fn token_precedence(&self, tidx: TIdx<StorageT>) -> Option<Precedence> {
        self.token_precs[usize::from(tidx)]
    }

    /// Return the %epp entry for token `tidx` (where `None` indicates "the token has no
    /// pretty-printed value"). Panics if `tidx` doesn't exist.
    pub fn token_epp(&self, tidx: TIdx<StorageT>) -> Option<&str> {
        self.token_epp[usize::from(tidx)].as_deref()
    }

    /// Return the span for token given by `tidx` if one exists.
    /// If `None`, the token is either implicit and not derived from a token
    /// in the source, otherwise the `YaccGrammar` itself may not derived from a
    /// textual source in which case the token may be explicit but still lack spans
    /// from its construction.
    pub fn token_span(&self, tidx: TIdx<StorageT>) -> Option<Span> {
        self.token_names[usize::from(tidx)]
            .as_ref()
            .map(|(span, _)| *span)
    }

    /// Get the action for production `pidx`. Panics if `pidx` doesn't exist.
    pub fn action(&self, pidx: PIdx<StorageT>) -> &Option<String> {
        &self.actions[usize::from(pidx)]
    }

    pub fn actiontype(&self, ridx: RIdx<StorageT>) -> &Option<String> {
        &self.actiontypes[usize::from(ridx)]
    }

    pub fn parse_param(&self) -> &Option<(String, String)> {
        &self.parse_param
    }

    /// Get the programs part of the grammar
    pub fn programs(&self) -> &Option<String> {
        &self.programs
    }

    /// Returns a map from names to `TIdx`s of all tokens that a lexer will need to generate valid
    /// inputs from this grammar.
    pub fn tokens_map(&self) -> HashMap<&str, TIdx<StorageT>> {
        let mut m = HashMap::with_capacity(usize::from(self.tokens_len) - 1);
        for tidx in self.iter_tidxs() {
            if let Some((_, n)) = self.token_names[usize::from(tidx)].as_ref() {
                m.insert(&**n, tidx);
            }
        }
        m
    }

    /// Return the index of the token named `n` or `None` if it doesn't exist.
    pub fn token_idx(&self, n: &str) -> Option<TIdx<StorageT>> {
        self.token_names
            .iter()
            .position(|x| x.as_ref().map_or(false, |(_, x)| x == n))
            // The call to as_() is safe because token_names is guaranteed to be small
            // enough to fit into StorageT
            .map(|x| TIdx(x.as_()))
    }

    /// Is the token `tidx` marked as `%avoid_insert`?
    pub fn avoid_insert(&self, tidx: TIdx<StorageT>) -> bool {
        if let Some(ai) = &self.avoid_insert {
            ai.get(usize::from(tidx)).unwrap()
        } else {
            false
        }
    }

    // How many shift/reduce conflicts were expected?
    pub fn expect(&self) -> Option<usize> {
        self.expect
    }

    // How many reduce/reduce conflicts were expected?
    pub fn expectrr(&self) -> Option<usize> {
        self.expectrr
    }

    /// Is there a path from the `from` rule to the `to` rule? Note that recursive rules
    /// return `true` for a path from themselves to themselves.
    pub fn has_path(&self, from: RIdx<StorageT>, to: RIdx<StorageT>) -> bool {
        let mut seen = vec![];
        seen.resize(usize::from(self.rules_len()), false);
        let mut todo = vec![];
        todo.resize(usize::from(self.rules_len()), false);
        todo[usize::from(from)] = true;
        loop {
            let mut empty = true;
            for ridx in self.iter_rules() {
                if !todo[usize::from(ridx)] {
                    continue;
                }
                seen[usize::from(ridx)] = true;
                todo[usize::from(ridx)] = false;
                empty = false;
                for pidx in self.rule_to_prods(ridx).iter() {
                    for sym in self.prod(*pidx) {
                        if let Symbol::Rule(p_ridx) = *sym {
                            if p_ridx == to {
                                return true;
                            }
                            if !seen[usize::from(p_ridx)] {
                                todo[usize::from(p_ridx)] = true;
                            }
                        }
                    }
                }
            }
            if empty {
                return false;
            }
        }
    }

    /// Returns the string representation of a given production `pidx`.
    pub fn pp_prod(&self, pidx: PIdx<StorageT>) -> String {
        let mut sprod = String::new();
        let ridx = self.prod_to_rule(pidx);
        sprod.push_str(self.rule_name_str(ridx));
        sprod.push(':');
        for sym in self.prod(pidx) {
            let s = match sym {
                Symbol::Token(tidx) => self.token_name(*tidx).unwrap(),
                Symbol::Rule(ridx) => self.rule_name_str(*ridx),
            };
            write!(sprod, " \"{}\"", s).ok();
        }
        sprod
    }

    /// Return a `SentenceGenerator` which can then generate minimal sentences for any rule
    /// based on the user-defined `token_cost` function which gives the associated cost for
    /// generating each token (where the cost must be greater than 0). Note that multiple
    /// tokens can have the same score. The simplest cost function is thus `|_| 1`.
    pub fn sentence_generator<F>(&self, token_cost: F) -> SentenceGenerator<StorageT>
    where
        F: Fn(TIdx<StorageT>) -> u8,
    {
        SentenceGenerator::new(self, token_cost)
    }

    /// Return a `YaccFirsts` struct for this grammar.
    pub fn firsts(&self) -> YaccFirsts<StorageT> {
        YaccFirsts::new(self)
    }

    /// Return a `YaccFirsts` struct for this grammar.
    pub fn follows(&self) -> YaccFollows<StorageT> {
        YaccFollows::new(self)
    }
}

/// A `SentenceGenerator` can generate minimal sentences for any given rule. e.g. for the
/// grammar:
///
/// ```text
/// %start A
/// %%
/// A: A B | ;
/// B: C | D;
/// C: 'x' B | 'x';
/// D: 'y' B | 'y' 'z';
/// ```
///
/// the following are valid minimal sentences:
///
/// ```text
/// A: []
/// B: [x]
/// C: [x]
/// D: [y, x] or [y, z]
/// ```
pub struct SentenceGenerator<'a, StorageT> {
    grm: &'a YaccGrammar<StorageT>,
    rule_min_costs: RefCell<Option<Vec<u16>>>,
    rule_max_costs: RefCell<Option<Vec<u16>>>,
    token_costs: Vec<u8>,
}

impl<'a, StorageT: 'static + PrimInt + Unsigned> SentenceGenerator<'a, StorageT>
where
    usize: AsPrimitive<StorageT>,
{
    fn new<F>(grm: &'a YaccGrammar<StorageT>, token_cost: F) -> Self
    where
        F: Fn(TIdx<StorageT>) -> u8,
    {
        let mut token_costs = Vec::with_capacity(usize::from(grm.tokens_len()));
        for tidx in grm.iter_tidxs() {
            token_costs.push(token_cost(tidx));
        }
        SentenceGenerator {
            grm,
            token_costs,
            rule_min_costs: RefCell::new(None),
            rule_max_costs: RefCell::new(None),
        }
    }

    /// What is the cost of a minimal sentence for the rule `ridx`? Note that, unlike
    /// `min_sentence`, this function does not actually *build* a sentence and it is thus much
    /// faster.
    pub fn min_sentence_cost(&self, ridx: RIdx<StorageT>) -> u16 {
        self.rule_min_costs
            .borrow_mut()
            .get_or_insert_with(|| rule_min_costs(self.grm, &self.token_costs))[usize::from(ridx)]
    }

    /// What is the cost of a maximal sentence for the rule `ridx`? Rules which can generate
    /// sentences of unbounded length return None; rules which can only generate maximal strings of
    /// a finite length return a `Some(u16)`.
    pub fn max_sentence_cost(&self, ridx: RIdx<StorageT>) -> Option<u16> {
        let v = self
            .rule_max_costs
            .borrow_mut()
            .get_or_insert_with(|| rule_max_costs(self.grm, &self.token_costs))[usize::from(ridx)];
        if v == u16::MAX {
            None
        } else {
            Some(v)
        }
    }

    /// Non-deterministically return a minimal sentence from the set of minimal sentences for the
    /// rule `ridx`.
    pub fn min_sentence(&self, ridx: RIdx<StorageT>) -> Vec<TIdx<StorageT>> {
        let cheapest_prod = |p_ridx: RIdx<StorageT>| -> PIdx<StorageT> {
            let mut low_sc = None;
            let mut low_idx = None;
            for &pidx in self.grm.rule_to_prods(p_ridx).iter() {
                let mut sc = 0;
                for sym in self.grm.prod(pidx).iter() {
                    sc += match *sym {
                        Symbol::Rule(i) => self.min_sentence_cost(i),
                        Symbol::Token(i) => u16::from(self.token_costs[usize::from(i)]),
                    };
                }
                if low_sc.is_none() || Some(sc) < low_sc {
                    low_sc = Some(sc);
                    low_idx = Some(pidx);
                }
            }
            low_idx.unwrap()
        };

        let mut s = vec![];
        let mut st = vec![(cheapest_prod(ridx), 0)];
        while let Some((pidx, sym_idx)) = st.pop() {
            let prod = self.grm.prod(pidx);
            for (sidx, sym) in prod.iter().enumerate().skip(sym_idx) {
                match sym {
                    Symbol::Rule(s_ridx) => {
                        st.push((pidx, sidx + 1));
                        st.push((cheapest_prod(*s_ridx), 0));
                    }
                    Symbol::Token(s_tidx) => {
                        s.push(*s_tidx);
                    }
                }
            }
        }
        s
    }

    /// Return (in arbitrary order) all the minimal sentences for the rule `ridx`.
    pub fn min_sentences(&self, ridx: RIdx<StorageT>) -> Vec<Vec<TIdx<StorageT>>> {
        let cheapest_prods = |p_ridx: RIdx<StorageT>| -> Vec<PIdx<StorageT>> {
            let mut low_sc = None;
            let mut low_idxs = vec![];
            for &pidx in self.grm.rule_to_prods(p_ridx).iter() {
                let mut sc = 0;
                for sym in self.grm.prod(pidx).iter() {
                    sc += match *sym {
                        Symbol::Rule(s_ridx) => self.min_sentence_cost(s_ridx),
                        Symbol::Token(s_tidx) => u16::from(self.token_costs[usize::from(s_tidx)]),
                    };
                }
                if low_sc.is_none() || Some(sc) <= low_sc {
                    if Some(sc) < low_sc {
                        low_idxs.clear();
                    }
                    low_sc = Some(sc);
                    low_idxs.push(pidx);
                }
            }
            low_idxs
        };

        let mut sts = Vec::new(); // Output sentences
        for pidx in cheapest_prods(ridx) {
            let prod = self.grm.prod(pidx);
            if prod.is_empty() {
                sts.push(vec![]);
                continue;
            }

            // We construct the minimal sentences in two phases.
            //
            // First, for each symbol in the production, we gather all the possible minimal
            // sentences for it. If, for the grammar:
            //   X: 'a' Y
            //   Y: 'b' | 'c'
            // we ask for the minimal sentences of X's only production we'll end up with a vec of
            // vecs as follows:
            //   [[['a']], [['b'], ['c']]]

            let mut ms = Vec::with_capacity(prod.len());
            for sym in prod {
                match *sym {
                    Symbol::Rule(s_ridx) => ms.push(self.min_sentences(s_ridx)),
                    Symbol::Token(s_tidx) => ms.push(vec![vec![s_tidx]]),
                }
            }

            // Second, we need to generate all combinations of the gathered sentences. We do this
            // by writing our own simple numeric incrementing scheme. If we rewrite the list from
            // above as follows:
            //
            //      0 1 <- call this axis "i"
            //   0: a b
            //   1:   c
            //   ^
            //   |
            //   call this axis "todo"
            //
            // this hopefully becomes easier to see. Let's call the list "ms": the combinations we
            // need to generate are thus:
            //
            //   ms[0][0] + ms[1][0]  (i.e. 'ab')
            //   ms[0][0] + ms[1][1]  (i.e. 'ac')
            //
            // The easiest way to model this is to have a list (todo) with each entry starting at
            // 0. After each iteration around the loop (i) we add 1 to the last todo column's
            // entry: if that spills over the length of the corresponding ms entry, then we reset
            // that column to zero, and try adding 1 to the previous column (as many times as
            // needed). If the first column spills, then we're done. This is basically normal
            // arithmetic but with each digit having an arbitrary base.

            let mut todo = vec![0; prod.len()];
            let mut cur = Vec::new();
            'b: loop {
                for i in 0..todo.len() {
                    cur.extend(&ms[i][todo[i]]);
                }
                sts.push(std::mem::take(&mut cur));

                let mut j = todo.len() - 1;
                loop {
                    if todo[j] + 1 == ms[j].len() {
                        if j == 0 {
                            break 'b;
                        }
                        todo[j] = 0;
                        j -= 1;
                    } else {
                        todo[j] += 1;
                        break;
                    }
                }
            }
        }
        sts
    }
}

/// Return the cost of a minimal string for each rule in this grammar. The cost of a
/// token is specified by the user-defined `token_cost` function.
#[allow(clippy::unnecessary_unwrap)]
fn rule_min_costs<StorageT: 'static + PrimInt + Unsigned>(
    grm: &YaccGrammar<StorageT>,
    token_costs: &[u8],
) -> Vec<u16>
where
    usize: AsPrimitive<StorageT>,
{
    // We use a simple(ish) fixed-point algorithm to determine costs. We maintain two lists
    // "costs" and "done". An integer costs[i] starts at 0 and monotonically increments
    // until done[i] is true, at which point costs[i] value is fixed. We also use the done
    // list as a simple "todo" list: whilst there is at least one false value in done, there is
    // still work to do.
    //
    // On each iteration of the loop, we examine each rule in the todo list to see if
    // we can get a better idea of its true cost. Some are trivial:
    //   * A rule with an empty production immediately has a cost of 0.
    //   * Rules whose productions don't reference any rules (i.e. only contain tokens) can be
    //     immediately given a cost by calculating the lowest-cost production.
    // However if a rule A references another rule B, we may need to wait until
    // we've fully analysed B before we can cost A. This might seem to cause problems with
    // recursive rules, so we introduce the concept of "incomplete costs" i.e. if a production
    // references a rule we can work out its minimum possible cost simply by counting
    // the production's token costs. Since rules can have a mix of complete and
    // incomplete productions, this is sometimes enough to allow us to assign a final cost to
    // a rule (if the lowest complete production's cost is lower than or equal to all
    // the lowest incomplete production's cost). This allows us to make progress, since it
    // means that we can iteratively improve our knowledge of a token's minimum cost:
    // eventually we will reach a point where we can determine it definitively.

    let mut costs = vec![0; usize::from(grm.rules_len())];
    let mut done = vec![false; usize::from(grm.rules_len())];
    loop {
        let mut all_done = true;
        for i in 0..done.len() {
            if done[i] {
                continue;
            }
            all_done = false;
            let mut ls_cmplt = None; // lowest completed cost
            let mut ls_noncmplt = None; // lowest non-completed cost

            // The call to as_() is guaranteed safe because done.len() == grm.rules_len(), and
            // we guarantee that grm.rules_len() can fit in StorageT.
            for pidx in grm.rule_to_prods(RIdx(i.as_())).iter() {
                let mut c: u16 = 0; // production cost
                let mut cmplt = true;
                for sym in grm.prod(*pidx) {
                    let sc = match *sym {
                        Symbol::Token(tidx) => u16::from(token_costs[usize::from(tidx)]),
                        Symbol::Rule(ridx) => {
                            if !done[usize::from(ridx)] {
                                cmplt = false;
                            }
                            costs[usize::from(ridx)]
                        }
                    };
                    c = c
                        .checked_add(sc)
                        .expect("Overflow occurred when calculating rule costs");
                }
                if cmplt && (ls_cmplt.is_none() || Some(c) < ls_cmplt) {
                    ls_cmplt = Some(c);
                } else if !cmplt && (ls_noncmplt.is_none() || Some(c) < ls_noncmplt) {
                    ls_noncmplt = Some(c);
                }
            }
            if ls_cmplt.is_some() && (ls_noncmplt.is_none() || ls_cmplt < ls_noncmplt) {
                debug_assert!(ls_cmplt.unwrap() >= costs[i]);
                costs[i] = ls_cmplt.unwrap();
                done[i] = true;
            } else if let Some(ls_noncmplt) = ls_noncmplt {
                debug_assert!(ls_noncmplt >= costs[i]);
                costs[i] = ls_noncmplt;
            }
        }
        if all_done {
            debug_assert!(done.iter().all(|x| *x));
            break;
        }
    }
    costs
}

/// Return the cost of the maximal string for each rule in this grammar (u32::max_val()
/// representing "this rule can generate strings of infinite length"). The cost of a
/// token is specified by the user-defined `token_cost` function.
#[allow(clippy::unnecessary_unwrap)]
fn rule_max_costs<StorageT: 'static + PrimInt + Unsigned>(
    grm: &YaccGrammar<StorageT>,
    token_costs: &[u8],
) -> Vec<u16>
where
    usize: AsPrimitive<StorageT>,
{
    let mut done = vec![false; usize::from(grm.rules_len())];
    let mut costs = vec![0; usize::from(grm.rules_len())];

    // First mark all recursive rules.
    for ridx in grm.iter_rules() {
        // Calling has_path so frequently is not exactly efficient...
        if grm.has_path(ridx, ridx) {
            costs[usize::from(ridx)] = u16::MAX;
            done[usize::from(ridx)] = true;
        }
    }

    loop {
        let mut all_done = true;
        for i in 0..done.len() {
            if done[i] {
                continue;
            }
            all_done = false;
            let mut hs_cmplt = None; // highest completed cost
            let mut hs_noncmplt = None; // highest non-completed cost

            // The call to as_() is guaranteed safe because done.len() == grm.rules_len(), and
            // we guarantee that grm.rules_len() can fit in StorageT.
            'a: for pidx in grm.rule_to_prods(RIdx(i.as_())).iter() {
                let mut c: u16 = 0; // production cost
                let mut cmplt = true;
                for sym in grm.prod(*pidx) {
                    let sc = match *sym {
                        Symbol::Token(s_tidx) => u16::from(token_costs[usize::from(s_tidx)]),
                        Symbol::Rule(s_ridx) => {
                            if costs[usize::from(s_ridx)] == u16::MAX {
                                // As soon as we find reference to an infinite rule, we
                                // can stop looking.
                                hs_cmplt = Some(u16::MAX);
                                break 'a;
                            }
                            if !done[usize::from(s_ridx)] {
                                cmplt = false;
                            }
                            costs[usize::from(s_ridx)]
                        }
                    };
                    c = c
                        .checked_add(sc)
                        .expect("Overflow occurred when calculating rule costs");
                    if c == u16::MAX {
                        panic!("Unable to represent cost in 64 bits.");
                    }
                }
                if cmplt && (hs_cmplt.is_none() || Some(c) > hs_cmplt) {
                    hs_cmplt = Some(c);
                } else if !cmplt && (hs_noncmplt.is_none() || Some(c) > hs_noncmplt) {
                    hs_noncmplt = Some(c);
                }
            }
            if hs_cmplt.is_some() && (hs_noncmplt.is_none() || hs_cmplt > hs_noncmplt) {
                debug_assert!(hs_cmplt.unwrap() >= costs[i]);
                costs[i] = hs_cmplt.unwrap();
                done[i] = true;
            } else if let Some(hs_noncmplt) = hs_noncmplt {
                debug_assert!(hs_noncmplt >= costs[i]);
                costs[i] = hs_noncmplt;
            }
        }
        if all_done {
            debug_assert!(done.iter().all(|x| *x));
            break;
        }
    }
    costs
}

#[cfg(test)]
mod test {
    use super::{
        super::{AssocKind, Precedence, YaccGrammar, YaccKind, YaccOriginalActionKind},
        rule_max_costs, rule_min_costs, IMPLICIT_RULE, IMPLICIT_START_RULE,
    };
    use crate::{PIdx, RIdx, Span, Symbol, TIdx};
    use std::collections::HashMap;

    macro_rules! bslice {
        () => (
            ::Vec::new().into_boxed_slice()
        );
        ($elem:expr; $n:expr) => (
            ::vec::from_elem($elem, $n).into_boxed_slice()
        );
        ($($x:expr),+ $(,)?) => (
            <[_]>::into_vec(
                Box::new([$($x),+])
            ).into_boxed_slice()
        );
    }

    #[test]
    fn test_minimal() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "%start R %token T %% R: 'T';",
        )
        .unwrap();

        assert_eq!(grm.start_prod, PIdx(1));
        assert_eq!(grm.implicit_rule(), None);
        grm.rule_idx("^").unwrap();
        grm.rule_idx("R").unwrap();
        grm.token_idx("T").unwrap();

        assert_eq!(&*grm.rules_prods, &[bslice![PIdx(1)], bslice![PIdx(0)]]);
        let start_prod = grm.prod(grm.rules_prods[usize::from(grm.rule_idx("^").unwrap())][0]);
        assert_eq!(*start_prod, [Symbol::Rule(grm.rule_idx("R").unwrap())]);
        let r_prod = grm.prod(grm.rules_prods[usize::from(grm.rule_idx("R").unwrap())][0]);
        assert_eq!(*r_prod, [Symbol::Token(grm.token_idx("T").unwrap())]);
        assert_eq!(&*grm.prods_rules, &[RIdx(1), RIdx(0)]);

        assert_eq!(
            grm.tokens_map(),
            [("T", TIdx(0))]
                .iter()
                .cloned()
                .collect::<HashMap<&str, TIdx<_>>>()
        );
        assert_eq!(grm.iter_rules().collect::<Vec<_>>(), vec![RIdx(0), RIdx(1)]);
    }

    #[test]
    fn test_rule_ref() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "%start R %token T %% R : S; S: 'T';",
        )
        .unwrap();

        grm.rule_idx("^").unwrap();
        grm.rule_idx("R").unwrap();
        grm.rule_idx("S").unwrap();
        grm.token_idx("T").unwrap();
        assert!(grm.token_name(grm.eof_token_idx()).is_none());

        assert_eq!(
            &*grm.rules_prods,
            &[bslice![PIdx(2)], bslice![PIdx(0)], bslice![PIdx(1)]]
        );
        let start_prod = grm.prod(grm.rules_prods[usize::from(grm.rule_idx("^").unwrap())][0]);
        assert_eq!(*start_prod, [Symbol::Rule(grm.rule_idx("R").unwrap())]);
        let r_prod = grm.prod(grm.rules_prods[usize::from(grm.rule_idx("R").unwrap())][0]);
        assert_eq!(r_prod.len(), 1);
        assert_eq!(r_prod[0], Symbol::Rule(grm.rule_idx("S").unwrap()));
        let s_prod = grm.prod(grm.rules_prods[usize::from(grm.rule_idx("S").unwrap())][0]);
        assert_eq!(s_prod.len(), 1);
        assert_eq!(s_prod[0], Symbol::Token(grm.token_idx("T").unwrap()));
    }

    #[test]
    #[rustfmt::skip]
    fn test_long_prod() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "%start R %token T1 T2 %% R : S 'T1' S; S: 'T2';"
        ).unwrap();

        grm.rule_idx("^").unwrap();
        grm.rule_idx("R").unwrap();
        grm.rule_idx("S").unwrap();
        grm.token_idx("T1").unwrap();
        grm.token_idx("T2").unwrap();

        assert_eq!(&*grm.rules_prods, &[bslice![PIdx(2)],
                                         bslice![PIdx(0)],
                                         bslice![PIdx(1)]]);
        assert_eq!(&*grm.prods_rules, &[RIdx(1),
                                         RIdx(2),
                                         RIdx(0)]);
        let start_prod = grm.prod(grm.rules_prods[usize::from(grm.rule_idx("^").unwrap())][0]);
        assert_eq!(*start_prod, [Symbol::Rule(grm.rule_idx("R").unwrap())]);
        let r_prod = grm.prod(grm.rules_prods[usize::from(grm.rule_idx("R").unwrap())][0]);
        assert_eq!(r_prod.len(), 3);
        assert_eq!(r_prod[0], Symbol::Rule(grm.rule_idx("S").unwrap()));
        assert_eq!(r_prod[1], Symbol::Token(grm.token_idx("T1").unwrap()));
        assert_eq!(r_prod[2], Symbol::Rule(grm.rule_idx("S").unwrap()));
        let s_prod = grm.prod(grm.rules_prods[usize::from(grm.rule_idx("S").unwrap())][0]);
        assert_eq!(s_prod.len(), 1);
        assert_eq!(s_prod[0], Symbol::Token(grm.token_idx("T2").unwrap()));
    }

    #[test]
    fn test_prods_rules() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "
            %start A
            %%
            A: B
             | C;
            B: 'x';
            C: 'y'
             | 'z';
          ",
        )
        .unwrap();

        assert_eq!(
            &*grm.prods_rules,
            &[RIdx(1), RIdx(1), RIdx(2), RIdx(3), RIdx(3), RIdx(0)]
        );
    }

    #[test]
    #[rustfmt::skip]
    fn test_left_right_nonassoc_precs() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "
            %start Expr
            %right '='
            %left '+' '-'
            %left '/'
            %left '*'
            %nonassoc '~'
            %%
            Expr : Expr '=' Expr
                 | Expr '+' Expr
                 | Expr '-' Expr
                 | Expr '/' Expr
                 | Expr '*' Expr
                 | Expr '~' Expr
                 | 'id' ;
          ").unwrap();

        assert_eq!(grm.prod_precs.len(), 8);
        assert_eq!(grm.prod_precs[0].unwrap(), Precedence{level: 0, kind: AssocKind::Right});
        assert_eq!(grm.prod_precs[1].unwrap(), Precedence{level: 1, kind: AssocKind::Left});
        assert_eq!(grm.prod_precs[2].unwrap(), Precedence{level: 1, kind: AssocKind::Left});
        assert_eq!(grm.prod_precs[3].unwrap(), Precedence{level: 2, kind: AssocKind::Left});
        assert_eq!(grm.prod_precs[4].unwrap(), Precedence{level: 3, kind: AssocKind::Left});
        assert_eq!(grm.prod_precs[5].unwrap(), Precedence{level: 4, kind: AssocKind::Nonassoc});
        assert!(grm.prod_precs[6].is_none());
        assert_eq!(grm.prod_precs[7], None);
    }

    #[test]
    #[rustfmt::skip]
    fn test_prec_override() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "
            %start expr
            %left '+' '-'
            %left '*' '/'
            %%
            expr : expr '+' expr
                 | expr '-' expr
                 | expr '*' expr
                 | expr '/' expr
                 | '-'  expr %prec '*'
                 | 'id' ;
        "
        ).unwrap();
        assert_eq!(grm.prod_precs.len(), 7);
        assert_eq!(grm.prod_precs[0].unwrap(), Precedence{level: 0, kind: AssocKind::Left});
        assert_eq!(grm.prod_precs[1].unwrap(), Precedence{level: 0, kind: AssocKind::Left});
        assert_eq!(grm.prod_precs[2].unwrap(), Precedence{level: 1, kind: AssocKind::Left});
        assert_eq!(grm.prod_precs[3].unwrap(), Precedence{level: 1, kind: AssocKind::Left});
        assert_eq!(grm.prod_precs[4].unwrap(), Precedence{level: 1, kind: AssocKind::Left});
        assert!(grm.prod_precs[5].is_none());
        assert_eq!(grm.prod_precs[6], None);
    }

    #[test]
    #[rustfmt::skip]
    fn test_implicit_tokens_rewrite() {
        let grm = YaccGrammar::new(
            YaccKind::Eco,
            "
          %implicit_tokens ws1 ws2
          %start S
          %%
          S: 'a' | T;
          T: 'c' |;
          "
        ).unwrap();

        // Check that the above grammar has been rewritten to:
        //   ^ : ^~;
        //   ^~: ~ S;
        //   ~ : ws1 | ws2 | ;
        //   S : 'a' ~ | T;
        //   T : 'c' ~ | ;

        assert_eq!(grm.prod_precs.len(), 9);

        let itfs_rule_idx = grm.rule_idx(IMPLICIT_START_RULE).unwrap();
        assert_eq!(grm.rules_prods[usize::from(itfs_rule_idx)].len(), 1);

        let itfs_prod1 = &grm.prods[usize::from(grm.rules_prods[usize::from(itfs_rule_idx)][0])];
        assert_eq!(itfs_prod1.len(), 2);
        assert_eq!(itfs_prod1[0], Symbol::Rule(grm.rule_idx(IMPLICIT_RULE).unwrap()));
        assert_eq!(itfs_prod1[1], Symbol::Rule(grm.rule_idx("S").unwrap()));

        let s_rule_idx = grm.rule_idx("S").unwrap();
        assert_eq!(grm.rules_prods[usize::from(s_rule_idx)].len(), 2);

        let s_prod1 = &grm.prods[usize::from(grm.rules_prods[usize::from(s_rule_idx)][0])];
        assert_eq!(s_prod1.len(), 2);
        assert_eq!(s_prod1[0], Symbol::Token(grm.token_idx("a").unwrap()));
        assert_eq!(s_prod1[1], Symbol::Rule(grm.rule_idx(IMPLICIT_RULE).unwrap()));

        let s_prod2 = &grm.prods[usize::from(grm.rules_prods[usize::from(s_rule_idx)][1])];
        assert_eq!(s_prod2.len(), 1);
        assert_eq!(s_prod2[0], Symbol::Rule(grm.rule_idx("T").unwrap()));

        let t_rule_idx = grm.rule_idx("T").unwrap();
        assert_eq!(grm.rules_prods[usize::from(s_rule_idx)].len(), 2);

        let t_prod1 = &grm.prods[usize::from(grm.rules_prods[usize::from(t_rule_idx)][0])];
        assert_eq!(t_prod1.len(), 2);
        assert_eq!(t_prod1[0], Symbol::Token(grm.token_idx("c").unwrap()));
        assert_eq!(t_prod1[1], Symbol::Rule(grm.rule_idx(IMPLICIT_RULE).unwrap()));

        let t_prod2 = &grm.prods[usize::from(grm.rules_prods[usize::from(t_rule_idx)][1])];
        assert_eq!(t_prod2.len(), 0);

        assert_eq!(Some(grm.rule_idx(IMPLICIT_RULE).unwrap()), grm.implicit_rule());
        let i_rule_idx = grm.rule_idx(IMPLICIT_RULE).unwrap();
        assert_eq!(grm.rules_prods[usize::from(i_rule_idx)].len(), 3);
        let i_prod1 = &grm.prods[usize::from(grm.rules_prods[usize::from(i_rule_idx)][0])];
        let i_prod2 = &grm.prods[usize::from(grm.rules_prods[usize::from(i_rule_idx)][1])];
        assert_eq!(i_prod1.len(), 2);
        assert_eq!(i_prod2.len(), 2);
        // We don't know what order the implicit rule will contain our tokens in,
        // hence the awkward dance below.
        let cnd1 = bslice![
            Symbol::Token(grm.token_idx("ws1").unwrap()),
            Symbol::Rule(grm.implicit_rule().unwrap()),
        ];
        let cnd2 = bslice![
            Symbol::Token(grm.token_idx("ws2").unwrap()),
            Symbol::Rule(grm.implicit_rule().unwrap()),
        ];
        assert!((*i_prod1 == cnd1 && *i_prod2 == cnd2) || (*i_prod1 == cnd2 && *i_prod2 == cnd1));
        let i_prod3 = &grm.prods[usize::from(grm.rules_prods[usize::from(i_rule_idx)][2])];
        assert_eq!(i_prod3.len(), 0);
    }

    #[test]
    #[rustfmt::skip]
    fn test_has_path() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "
            %start A
            %%
            A: B;
            B: B 'x' | C;
            C: C 'y' | ;
          "
        ).unwrap();

        let a_ridx = grm.rule_idx("A").unwrap();
        let b_ridx = grm.rule_idx("B").unwrap();
        let c_ridx = grm.rule_idx("C").unwrap();
        assert!(grm.has_path(a_ridx, b_ridx));
        assert!(grm.has_path(a_ridx, c_ridx));
        assert!(grm.has_path(b_ridx, b_ridx));
        assert!(grm.has_path(b_ridx, c_ridx));
        assert!(grm.has_path(c_ridx, c_ridx));
        assert!(!grm.has_path(a_ridx, a_ridx));
        assert!(!grm.has_path(b_ridx, a_ridx));
        assert!(!grm.has_path(c_ridx, a_ridx));
    }

    #[test]
    #[rustfmt::skip]
    fn test_rule_min_costs() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "
            %start A
            %%
            A: A B | ;
            B: C | D | E;
            C: 'x' B | 'x';
            D: 'y' B | 'y' 'z';
            E: 'x' A | 'x' 'y';
          "
        ).unwrap();

        let scores = rule_min_costs(&grm, &[1, 1, 1]);
        assert_eq!(scores[usize::from(grm.rule_idx("A").unwrap())], 0);
        assert_eq!(scores[usize::from(grm.rule_idx("B").unwrap())], 1);
        assert_eq!(scores[usize::from(grm.rule_idx("C").unwrap())], 1);
        assert_eq!(scores[usize::from(grm.rule_idx("D").unwrap())], 2);
        assert_eq!(scores[usize::from(grm.rule_idx("E").unwrap())], 1);
    }

    #[test]
    fn test_min_sentences() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "
            %start A
            %%
            A: A B | ;
            B: C | D;
            C: 'x' B | 'x';
            D: 'y' B | 'y' 'z';
          ",
        )
        .unwrap();

        let sg = grm.sentence_generator(|_| 1);

        let find = |nt_name: &str, str_cnds: Vec<Vec<&str>>| {
            let cnds = str_cnds
                .iter()
                .map(|x| {
                    x.iter()
                        .map(|y| grm.token_idx(y).unwrap())
                        .collect::<Vec<_>>()
                })
                .collect::<Vec<_>>();

            let ms = sg.min_sentence(grm.rule_idx(nt_name).unwrap());
            if !cnds.iter().any(|x| x == &ms) {
                panic!("{:?} doesn't have any matches in {:?}", ms, str_cnds);
            }

            let min_sts = sg.min_sentences(grm.rule_idx(nt_name).unwrap());
            assert_eq!(cnds.len(), min_sts.len());
            for ms in min_sts {
                if !cnds.iter().any(|x| x == &ms) {
                    panic!("{:?} doesn't have any matches in {:?}", ms, str_cnds);
                }
            }
        };

        find("A", vec![vec![]]);
        find("B", vec![vec!["x"]]);
        find("C", vec![vec!["x"]]);
        find("D", vec![vec!["y", "x"], vec!["y", "z"]]);
    }

    #[test]
    #[rustfmt::skip]
    fn test_rule_max_costs1() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "
            %start A
            %%
            A: A B | ;
            B: C | D | E;
            C: 'x' B | 'x';
            D: 'y' B | 'y' 'z';
            E: 'x' A | 'x' 'y';
          "
        ).unwrap();

        let scores = rule_max_costs(&grm, &[1, 1, 1]);
        assert_eq!(scores[usize::from(grm.rule_idx("A").unwrap())], u16::MAX);
        assert_eq!(scores[usize::from(grm.rule_idx("B").unwrap())], u16::MAX);
        assert_eq!(scores[usize::from(grm.rule_idx("C").unwrap())], u16::MAX);
        assert_eq!(scores[usize::from(grm.rule_idx("D").unwrap())], u16::MAX);
        assert_eq!(scores[usize::from(grm.rule_idx("E").unwrap())], u16::MAX);
    }

    #[test]
    #[rustfmt::skip]
    fn test_rule_max_costs2() {
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "
            %start A
            %%
            A: A B | B;
            B: C | D;
            C: 'x' 'y' | 'x';
            D: 'y' 'x' | 'y' 'x' 'z';
          "
        ).unwrap();

        let scores = rule_max_costs(&grm, &[1, 1, 1]);
        assert_eq!(scores[usize::from(grm.rule_idx("A").unwrap())], u16::MAX);
        assert_eq!(scores[usize::from(grm.rule_idx("B").unwrap())], 3);
        assert_eq!(scores[usize::from(grm.rule_idx("C").unwrap())], 2);
        assert_eq!(scores[usize::from(grm.rule_idx("D").unwrap())], 3);
    }

    #[test]
    fn test_out_of_order_productions() {
        // Example taken from p54 of Locally least-cost error repair in LR parsers, Carl Cerecke
        let grm = YaccGrammar::new(
            YaccKind::Original(YaccOriginalActionKind::GenericParseTree),
            "
            %start S
            %%
            S: A 'c' 'd'
             | B 'c' 'e';
            A: 'a';
            B: 'a'
             | 'b';
            A: 'b';
            ",
        )
        .unwrap();

        assert_eq!(
            &*grm.prods_rules,
            &[
                RIdx(1),
                RIdx(1),
                RIdx(2),
                RIdx(3),
                RIdx(3),
                RIdx(2),
                RIdx(0)
            ]
        );
    }

    #[test]
    fn test_token_spans() {
        let src = "%%\nAB: 'a' | 'foo';";
        let grm =
            YaccGrammar::new(YaccKind::Original(YaccOriginalActionKind::NoAction), src).unwrap();
        let token_map = grm.tokens_map();
        let a_tidx = token_map.get("a");
        let foo_tidx = token_map.get("foo");
        let a_span = grm.token_span(*a_tidx.unwrap()).unwrap();
        let foo_span = grm.token_span(*foo_tidx.unwrap()).unwrap();
        let ab_span = grm.rule_name_span(grm.rule_idx("AB").unwrap());
        assert_eq!(a_span, Span::new(8, 9));
        assert_eq!(foo_span, Span::new(14, 17));
        assert_eq!(ab_span, Span::new(3, 5));
        assert_eq!(&src[a_span.start()..a_span.end()], "a");
        assert_eq!(&src[foo_span.start()..foo_span.end()], "foo");
        assert_eq!(&src[ab_span.start()..ab_span.end()], "AB");
    }

    #[test]
    fn token_span_issue296() {
        let src = "%%
                   S: | AB;
                   A: 'a' 'b';
                   B: 'b' 'c';
                   AB: A AB | B ';' AB;
                   %%
                   ";
        let grm =
            YaccGrammar::new(YaccKind::Original(YaccOriginalActionKind::NoAction), src).unwrap();
        let token_map = grm.tokens_map();
        let c_tidx = token_map.get("c").unwrap();
        assert_eq!(grm.token_name(*c_tidx), Some("c"));
        let c_span = grm.token_span(*c_tidx).unwrap();
        assert_eq!(&src[c_span.start()..c_span.end()], "c");
    }
}